These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 19738062)
1. Dysfunctional transforming growth factor-beta receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Pu H; Collazo J; Jones E; Gayheart D; Sakamoto S; Vogt A; Mitchell B; Kyprianou N Cancer Res; 2009 Sep; 69(18):7366-74. PubMed ID: 19738062 [TBL] [Abstract][Full Text] [Related]
2. Aberrant TGF-β Signaling Drives Castration-Resistant Prostate Cancer in a Male Mouse Model of Prostate Tumorigenesis. Pu H; Begemann DE; Kyprianou N Endocrinology; 2017 Jun; 158(6):1612-1622. PubMed ID: 28324007 [TBL] [Abstract][Full Text] [Related]
3. Expression of transforming growth factor-beta receptor type I and type II in rat ventral prostate and Dunning R3327 PAP adenocarcinoma in response to castration and oestrogen treatment. Wikström P; Bergh A; Damber JE Urol Res; 1997; 25(2):103-11. PubMed ID: 9144876 [TBL] [Abstract][Full Text] [Related]
4. Enhanced tumorigenesis and reduced transforming growth factor-beta type II receptor in lung tumors from mice with reduced gene dosage of transforming growth factor-beta1. Kang Y; Mariano JM; Angdisen J; Moody TW; Diwan BA; Wakefield LM; Jakowlew SB Mol Carcinog; 2000 Oct; 29(2):112-26. PubMed ID: 11074608 [TBL] [Abstract][Full Text] [Related]
5. Alterations of transforming growth factor beta1 (TGF-beta1) and TGFbeta receptor expressions with progression in Dunning rat prostatic adenocarcinoma sublines. Wikström P; Lindh G; Bergh A; Damber JE Urol Res; 1999 Jun; 27(3):185-93. PubMed ID: 10422820 [TBL] [Abstract][Full Text] [Related]
6. Suppression of Akt1-β-catenin pathway in advanced prostate cancer promotes TGFβ1-mediated epithelial to mesenchymal transition and metastasis. Gao F; Alwhaibi A; Sabbineni H; Verma A; Eldahshan W; Somanath PR Cancer Lett; 2017 Aug; 402():177-189. PubMed ID: 28602980 [TBL] [Abstract][Full Text] [Related]
8. Transforming growth factor beta 1 and its receptor types I and II. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma. Royuela M; De Miguel MP; Bethencourt FR; Sanchez-Chapado M; Fraile B; Paniagua R Growth Factors; 1998; 16(2):101-10. PubMed ID: 9932228 [TBL] [Abstract][Full Text] [Related]
9. Reduction in transforming growth factor-beta type II receptor in mouse lung carcinogenesis. Jakowlew SB; Moody TW; You L; Mariano JM Mol Carcinog; 1998 May; 22(1):46-56. PubMed ID: 9609100 [TBL] [Abstract][Full Text] [Related]
10. Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes. Peek EM; Song W; Zhang H; Huang J; Chin AI Prostate; 2015 Apr; 75(5):463-73. PubMed ID: 25597486 [TBL] [Abstract][Full Text] [Related]
11. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers. Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622 [TBL] [Abstract][Full Text] [Related]
12. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Placencio VR; Sharif-Afshar AR; Li X; Huang H; Uwamariya C; Neilson EG; Shen MM; Matusik RJ; Hayward SW; Bhowmick NA Cancer Res; 2008 Jun; 68(12):4709-18. PubMed ID: 18559517 [TBL] [Abstract][Full Text] [Related]
13. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. Han G; Lu SL; Li AG; He W; Corless CL; Kulesz-Martin M; Wang XJ J Clin Invest; 2005 Jul; 115(7):1714-23. PubMed ID: 15937546 [TBL] [Abstract][Full Text] [Related]
14. Down-regulation of protein and mRNA expression for transforming growth factor-beta (TGF-beta1) type I and type II receptors in human prostate cancer. Guo Y; Jacobs SC; Kyprianou N Int J Cancer; 1997 May; 71(4):573-9. PubMed ID: 9178810 [TBL] [Abstract][Full Text] [Related]
15. Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness. Li X; Martinez-Ferrer M; Botta V; Uwamariya C; Banerjee J; Bhowmick NA Oncogene; 2011 Jan; 30(2):167-77. PubMed ID: 20818421 [TBL] [Abstract][Full Text] [Related]
16. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Kaplan PJ; Mohan S; Cohen P; Foster BA; Greenberg NM Cancer Res; 1999 May; 59(9):2203-9. PubMed ID: 10232609 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-beta 1 and its receptors in human lung cancer and mouse lung carcinogenesis. Kang Y; Prentice MA; Mariano JM; Davarya S; Linnoila RI; Moody TW; Wakefield LM; Jakowlew SB Exp Lung Res; 2000 Dec; 26(8):685-707. PubMed ID: 11195465 [TBL] [Abstract][Full Text] [Related]
18. Loss of TGF-β responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Li X; Sterling JA; Fan KH; Vessella RL; Shyr Y; Hayward SW; Matrisian LM; Bhowmick NA Mol Cancer Res; 2012 Apr; 10(4):494-503. PubMed ID: 22290877 [TBL] [Abstract][Full Text] [Related]
19. A kinase-defective transforming growth factor-beta receptor type II is a dominant-negative regulator for human breast carcinoma MCF-7 cells. Ko Y; Koli KM; Banerji SS; Li W; Zborowska E; Willson JK; Brattain MG; Arteaga CL Int J Oncol; 1998 Jan; 12(1):87-94. PubMed ID: 9454891 [TBL] [Abstract][Full Text] [Related]
20. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Li X; Placencio V; Iturregui JM; Uwamariya C; Sharif-Afshar AR; Koyama T; Hayward SW; Bhowmick NA Oncogene; 2008 Nov; 27(56):7118-30. PubMed ID: 18724388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]