BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 19738294)

  • 1. Preparation of a SERS substrate and its sample-loading method for point-of-use application.
    Fang C; Agarwal A; Ji H; Karen WY; Yobas L
    Nanotechnology; 2009 Oct; 20(40):405604. PubMed ID: 19738294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic self-assembly.
    Liu R; Si M; Kang Y; Zi X; Liu Z; Zhang D
    J Colloid Interface Sci; 2010 Mar; 343(1):52-7. PubMed ID: 20035945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array.
    Feng F; Zhi G; Jia HS; Cheng L; Tian YT; Li XJ
    Nanotechnology; 2009 Jul; 20(29):295501. PubMed ID: 19567965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays.
    Cheng C; Yan B; Wong SM; Li X; Zhou W; Yu T; Shen Z; Yu H; Fan HJ
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1824-8. PubMed ID: 20515071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Chai YH; Xiao H; Chen SJ; Tsai HL
    Opt Express; 2009 Nov; 17(24):21581-9. PubMed ID: 19997399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially focused deposition of capillary electrophoresis effluent onto surface-enhanced Raman-active substrates for off-column spectroscopy.
    DeVault GL; Sepaniak MJ
    Electrophoresis; 2001 Jul; 22(11):2303-11. PubMed ID: 11504066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering-active silver nanoparticles.
    Yang KH; Chang CM
    Anal Chim Acta; 2012 Jun; 729():1-6. PubMed ID: 22595427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide.
    Li YS; Cheng J; Chung KT
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates.
    Shen XS; Wang GZ; Hong X; Zhu W
    Phys Chem Chem Phys; 2009 Sep; 11(34):7450-4. PubMed ID: 19690718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering on silver nanostructured films prepared by spray-deposition.
    Brayner R; Iglesias R; Truong S; Beji Z; Felidj N; Fiévet F; Aubard J
    Langmuir; 2010 Nov; 26(22):17465-9. PubMed ID: 20942468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AuAg bimetallic nanoparticles film fabricated based on H2O2-mediated silver reduction and its application.
    Wang L; Wang F; Shang L; Zhu C; Ren W; Dong S
    Talanta; 2010 Jun; 82(1):113-7. PubMed ID: 20685444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells.
    Küstner B; Gellner M; Schütz M; Schöppler F; Marx A; Ströbel P; Adam P; Schmuck C; Schlücker S
    Angew Chem Int Ed Engl; 2009; 48(11):1950-3. PubMed ID: 19191355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y; Ren B; Yao JL; Gu RA; Tian ZQ
    J Phys Chem B; 2006 Mar; 110(9):4002-6. PubMed ID: 16509689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled silver nanochains for surface-enhanced Raman scattering.
    Yang Y; Shi J; Tanaka T; Nogami M
    Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF
    J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.