BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19738471)

  • 1. Vigorous physical activity and vagal modulation in young adults.
    Soares-Miranda L; Sandercock G; Valente H; Vale S; Santos R; Mota J
    Eur J Cardiovasc Prev Rehabil; 2009 Dec; 16(6):705-11. PubMed ID: 19738471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of achieving vigorous as well as moderate physical activity recommendations: evidence from heart rate complexity and cardiac vagal modulation.
    Soares-Miranda L; Sandercock G; Vale S; Silva P; Moreira C; Santos R; Mota J
    J Sports Sci; 2011 Jul; 29(10):1011-8. PubMed ID: 21623533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High levels of C-reactive protein are associated with reduced vagal modulation and low physical activity in young adults.
    Soares-Miranda L; Negrao CE; Antunes-Correa LM; Nobre TS; Silva P; Santos R; Vale S; Mota J
    Scand J Med Sci Sports; 2012 Apr; 22(2):278-84. PubMed ID: 20626701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Heart rate variability and physical exercise. Current status].
    Hottenrott K; Hoos O; Esperer HD
    Herz; 2006 Sep; 31(6):544-52. PubMed ID: 17036185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-specific associations between cardiac vagal activity and functional somatic symptoms: a population-based study.
    Tak LM; Janssens KA; Dietrich A; Slaets JP; Rosmalen JG
    Psychother Psychosom; 2010; 79(3):179-87. PubMed ID: 20234148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac vagal activity following three intensities of exercise in humans.
    Gladwell VF; Sandercock GR; Birch SL
    Clin Physiol Funct Imaging; 2010 Jan; 30(1):17-22. PubMed ID: 19744086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of heart rate variability after supramaximal exertion.
    Niewiadomski W; Gasiorowska A; Krauss B; Mróz A; Cybulski G
    Clin Physiol Funct Imaging; 2007 Sep; 27(5):309-19. PubMed ID: 17697028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditions of autonomic reciprocal interplay versus autonomic co-activation: effects on non-linear heart rate dynamics.
    Mourot L; Bouhaddi M; Gandelin E; Cappelle S; Nguyen NU; Wolf JP; Rouillon JD; Hughson R; Regnard J
    Auton Neurosci; 2007 Dec; 137(1-2):27-36. PubMed ID: 17662671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationships between self-assessed habitual physical activity and non-invasive measures of cardiac autonomic modulation in young healthy volunteers.
    Sandercock GR; Hardy-Shepherd D; Nunan D; Brodie D
    J Sports Sci; 2008 Sep; 26(11):1171-7. PubMed ID: 18608846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of opposing reflex stimuli and heart rate variability to examine the effects of lipophilic and hydrophilic beta-blockers on human cardiac vagal control.
    Vaile JC; Fletcher J; Al-Ani M; Ross HF; Littler WA; Coote JH; Townend JN
    Clin Sci (Lond); 1999 Nov; 97(5):585-93; discussion 609-10. PubMed ID: 10545309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of aerobic physical training on cardiac autonomic control of rats submitted to ovariectomy.
    Tezini GC; Silveira LC; Villa-Clé PG; Jacinto CP; Di Sacco TH; Souza HC
    Menopause; 2009; 16(1):110-6. PubMed ID: 18978639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients.
    Milicević G
    Coll Antropol; 2005 Jun; 29(1):295-300. PubMed ID: 16117339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of head-up tilting on vagal nerve activity in man].
    Kitamura K; Takata S; Futamata H; Teragami T; Hashimoto T
    Rinsho Byori; 1997 Aug; 45(8):771-7. PubMed ID: 9283229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between very high physical activity energy expenditure, heart rate variability and self-estimate of health status in middle-aged individuals.
    Buchheit M; Simon C; Charloux A; Doutreleau S; Piquard F; Brandenberger G
    Int J Sports Med; 2006 Sep; 27(9):697-701. PubMed ID: 16944398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of heart rate variability measures to assess autonomic control during exercise.
    Sandercock GR; Brodie DA
    Scand J Med Sci Sports; 2006 Oct; 16(5):302-13. PubMed ID: 16774653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart rate variability modifications following exercise training in type 2 diabetic patients with definite cardiac autonomic neuropathy.
    Pagkalos M; Koutlianos N; Kouidi E; Pagkalos E; Mandroukas K; Deligiannis A
    Br J Sports Med; 2008 Jan; 42(1):47-54. PubMed ID: 17526623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of angiotensin converting enzyme inhibitor treatment on cardiac autonomic modulation in patients receiving haemodialysis.
    Ondocin PT; Narsipur SS
    Nephrology (Carlton); 2006 Dec; 11(6):497-501. PubMed ID: 17199786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrepancies between methods of identifying objectively determined physical activity.
    Ham SA; Reis JP; Strath SJ; Dubose KD; Ainsworth BE
    Med Sci Sports Exerc; 2007 Jan; 39(1):52-8. PubMed ID: 17218884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered autonomic neural control of the cardiovascular system in patients with polycystic ovary syndrome.
    Tekin G; Tekin A; Kiliçarslan EB; Haydardedeoğlu B; Katircibaşi T; Koçum T; Erol T; Cölkesen Y; Sezgin AT; Müderrisoğlu H
    Int J Cardiol; 2008 Oct; 130(1):49-55. PubMed ID: 18055040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of resting and postexercise heart rate measures.
    Al Haddad H; Laursen PB; Chollet D; Ahmaidi S; Buchheit M
    Int J Sports Med; 2011 Aug; 32(8):598-605. PubMed ID: 21574126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.