These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Delivery of an angiogenic gene into ischemic muscle by novel bubble liposomes followed by ultrasound exposure. Negishi Y; Matsuo K; Endo-Takahashi Y; Suzuki K; Matsuki Y; Takagi N; Suzuki R; Maruyama K; Aramaki Y Pharm Res; 2011 Apr; 28(4):712-9. PubMed ID: 20931266 [TBL] [Abstract][Full Text] [Related]
23. Autologous skeletal myoblasts transduced with a new adenoviral bicistronic vector for treatment of hind limb ischemia. Niagara MI; Haider HKh; Ye L; Koh VS; Lim YT; Poh KK; Ge R; Sim EK J Vasc Surg; 2004 Oct; 40(4):774-85. PubMed ID: 15472608 [TBL] [Abstract][Full Text] [Related]
24. Appropriate control of ex vivo gene therapy delivering basic fibroblast growth factor promotes successful and safe development of collateral vessels in rabbit model of hind limb ischemia. Ishii S; Koyama H; Miyata T; Nishikage S; Hamada H; Miyatake S; Shigematsu H J Vasc Surg; 2004 Mar; 39(3):629-38. PubMed ID: 14981459 [TBL] [Abstract][Full Text] [Related]
25. Short hairpin RNA gene silencing of prolyl hydroxylase-2 with a minicircle vector improves neovascularization of hindlimb ischemia. Lijkwan MA; Hellingman AA; Bos EJ; van der Bogt KE; Huang M; Kooreman NG; de Vries MR; Peters HA; Robbins RC; Hamming JF; Quax PH; Wu JC Hum Gene Ther; 2014 Jan; 25(1):41-9. PubMed ID: 24090375 [TBL] [Abstract][Full Text] [Related]
26. miR-709 exerts an angiogenic effect through a FGF2 upregulation induced by a GSK3B downregulation. Ueno K; Kurazumi H; Suzuki R; Yanagihara M; Mizoguchi T; Harada T; Morikage N; Hamano K Sci Rep; 2024 May; 14(1):11372. PubMed ID: 38762650 [TBL] [Abstract][Full Text] [Related]
27. Construction of a bicistronic proangiogenic expression vector and its application in experimental angiogenesis in vivo. Małecki M; Przybyszewska M; Janik P Acta Biochim Pol; 2003; 50(3):875-82. PubMed ID: 14515168 [TBL] [Abstract][Full Text] [Related]
28. Increased perfusion and angiogenesis in a hindlimb ischemia model with plasmid FGF-2 delivered by noninvasive electroporation. Ferraro B; Cruz YL; Baldwin M; Coppola D; Heller R Gene Ther; 2010 Jun; 17(6):763-9. PubMed ID: 20393507 [TBL] [Abstract][Full Text] [Related]
29. In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. Licursi M; Christian SL; Pongnopparat T; Hirasawa K Gene Ther; 2011 Jun; 18(6):631-6. PubMed ID: 21368899 [TBL] [Abstract][Full Text] [Related]
30. Coxsackievirus B3 used as a gene therapy vector to express functional FGF2. Kim DS; Kim H; Shim SH; Kim C; Song M; Kim YH; Jung YW; Nam JH Gene Ther; 2012 Dec; 19(12):1159-65. PubMed ID: 22170343 [TBL] [Abstract][Full Text] [Related]
31. The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model. Long J; Wang S; Zhang Y; Liu X; Zhang H; Wang S J Vasc Surg; 2013 Sep; 58(3):756-65.e2. PubMed ID: 23562340 [TBL] [Abstract][Full Text] [Related]
32. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Silvestre JS; Mallat Z; Duriez M; Tamarat R; Bureau MF; Scherman D; Duverger N; Branellec D; Tedgui A; Levy BI Circ Res; 2000 Sep; 87(6):448-52. PubMed ID: 10988235 [TBL] [Abstract][Full Text] [Related]
34. Efficient gene transfer in skeletal muscle with AAV-derived bicistronic vector using the FGF-1 IRES. Delluc-Clavières A; Le Bec C; Van den Berghe L; Conte C; Allo V; Danos O; Prats AC Gene Ther; 2008 Aug; 15(15):1090-8. PubMed ID: 18369321 [TBL] [Abstract][Full Text] [Related]
35. Effective treatment of vascular endothelial growth factor refractory hindlimb ischemia by a mutant endothelial nitric oxide synthase gene. Qian HS; Liu P; Huw LY; Orme A; Halks-Miller M; Hill SM; Jin F; Kretschmer P; Blasko E; Cashion L; Szymanski P; Vergona R; Harkins R; Yu J; Sessa WC; Dole WP; Rubanyi GM; Kauser K Gene Ther; 2006 Sep; 13(18):1342-50. PubMed ID: 16642030 [TBL] [Abstract][Full Text] [Related]
36. Pulsatility Index as a Novel Parameter for Perfusion in Mouse Model of Hindlimb Ischemia. Xu H; Lu S; Ding L; Lyu L; Ma Z; Lu Q Cell Physiol Biochem; 2018; 48(5):2114-2122. PubMed ID: 30107383 [TBL] [Abstract][Full Text] [Related]
37. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Taniyama Y; Morishita R; Aoki M; Nakagami H; Yamamoto K; Yamazaki K; Matsumoto K; Nakamura T; Kaneda Y; Ogihara T Gene Ther; 2001 Feb; 8(3):181-9. PubMed ID: 11313789 [TBL] [Abstract][Full Text] [Related]
38. Intramuscular gene transfer of soluble tumor necrosis factor-alpha receptor 1 activates vascular endothelial growth factor receptor and accelerates angiogenesis in a rat model of hindlimb ischemia. Sugano M; Tsuchida K; Makino N Circulation; 2004 Feb; 109(6):797-802. PubMed ID: 14970118 [TBL] [Abstract][Full Text] [Related]
39. Pluronic L64-mediated stable HIF-1α expression in muscle for therapeutic angiogenesis in mouse hindlimb ischemia. Song H; Liu S; Li C; Geng Y; Wang G; Gu Z Int J Nanomedicine; 2014; 9():3439-52. PubMed ID: 25092975 [TBL] [Abstract][Full Text] [Related]
40. Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Emanueli C; Minasi A; Zacheo A; Chao J; Chao L; Salis MB; Straino S; Tozzi MG; Smith R; Gaspa L; Bianchini G; Stillo F; Capogrossi MC; Madeddu P Circulation; 2001 Jan; 103(1):125-32. PubMed ID: 11136697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]