These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 197388)

  • 1. Methionine biosynthesis in Saccharomyces cerevisiae. II. Gene-enzyme relationships in the sulfate assimilation pathway.
    Masselot M; Surdin-Kerjan Y
    Mol Gen Genet; 1977 Jul; 154(1):23-30. PubMed ID: 197388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study.
    Breton A; Surdin-Kerjan Y
    J Bacteriol; 1977 Oct; 132(1):224-32. PubMed ID: 199574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine biosynthesis in Saccharomyces cerevisiae: mutations at the regulatory locus ETH2. I. Genetic data.
    Masselot M; de Robichon-Szulmajster H
    Mol Gen Genet; 1974 Apr; 129(4):339-48. PubMed ID: 4366324
    [No Abstract]   [Full Text] [Related]  

  • 4. Methionine biosynthesis in Saccharomyces cerevisiae: mutations at the regulatory locus ETH2. II. Physiological and biochemical data.
    Masselot M; de Robichon-Szulmajster H
    Mol Gen Genet; 1974 Apr; 129(4):349-61. PubMed ID: 4601352
    [No Abstract]   [Full Text] [Related]  

  • 5. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants.
    Masselot M; De Robichon-Szulmajster H
    Mol Gen Genet; 1975 Aug; 139(2):121-32. PubMed ID: 1101032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine biosynthesis in Saccharomyces cerevisiae: mutations at the regulatory locus ETH2. 3. Study of several homoallelic and heteroallelic diploids.
    Masselot M; de Robichon-Szulmajster H
    Mol Gen Genet; 1974 Apr; 129(4):363-8. PubMed ID: 4601253
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation of regulatory mutants in Saccharomyces cerevisiae.
    Greer H; Fink GR
    Methods Cell Biol; 1975; 11():247-72. PubMed ID: 1102851
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae.
    Antoniewski J; Robichon-Szulmajster H
    Biochimie; 1973 May; 55(5):529-39. PubMed ID: 4585174
    [No Abstract]   [Full Text] [Related]  

  • 10. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation.
    Thomas D; Barbey R; Henry D; Surdin-Kerjan Y
    J Gen Microbiol; 1992 Oct; 138(10):2021-8. PubMed ID: 1479340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cervisiae.
    Masselot M; Robichon-Szulmajster H
    Genetics; 1972 Aug; 71(4):535-50. PubMed ID: 4560067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae.
    Cherest H; Eichler F; Robichon-Szulmajster H
    J Bacteriol; 1969 Jan; 97(1):328-36. PubMed ID: 5764336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine biosynthesis from the 4-carbon skeleton of ethionine in Saccharomyces cerevisiae.
    Cherest H; Talbot G; Robichon-Szulmajster H
    Biochem Biophys Res Commun; 1968 Aug; 32(4):723-30. PubMed ID: 5682295
    [No Abstract]   [Full Text] [Related]  

  • 14. O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.
    Chang EC; Kosman DJ
    J Bacteriol; 1990 Apr; 172(4):1840-5. PubMed ID: 2180907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae II. Analysis of suplhite-producing strains.
    Romano P; Zambonelli C; Soli MG
    Arch Microbiol; 1976 Jun; 108(2):211-5. PubMed ID: 776114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Diversity of the types of regulation involved in the biosynthesis of threonine and methionine in Saccharomyces cerevisiae].
    Robichon-Szulmajster H
    Biochimie; 1971; 53(2):131-4. PubMed ID: 5559025
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA.
    Unger MW; Hartwell LH
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1664-8. PubMed ID: 775494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases.
    Cherest H; Surdin-Kerjan Y
    Mol Gen Genet; 1978 Jul; 163(2):153-67. PubMed ID: 355845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of sulphate assimilation in Saccharomyces cerevisiae.
    Ono B; Kijima K; Ishii N; Kawato T; Matsuda A; Paszewski A; Shinoda S
    Yeast; 1996 Sep; 12(11):1153-62. PubMed ID: 8896281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the sulphate assimilation pathway in utilization of glutathione as a sulphur source by Saccharomyces cerevisiae.
    Miyake T; Sammoto H; Kanayama M; Tomochika Ki; Shinoda S; Ono Bi
    Yeast; 1999 Oct; 15(14):1449-57. PubMed ID: 10514563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.