These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Two-wave mixing in photorefractive BaTiO(3):Rh at 1.06 mum in the nanosecond regime. Huot N; Jonathan JM; Roosen G; Rytz D Opt Lett; 1997 Jul; 22(13):976-8. PubMed ID: 18185724 [TBL] [Abstract][Full Text] [Related]
3. Temporal behavior of the intensity-dependent absorption in photorefractive BaTiO(3). Motes A; Brost G; Rotgé J; Kim JJ Opt Lett; 1988 Jun; 13(6):509-11. PubMed ID: 19745948 [TBL] [Abstract][Full Text] [Related]
4. Bistable ring resonator utilizing saturable photorefractive gain and loss. Lininger DM; Martin PJ; Anderson DZ Opt Lett; 1989 Jul; 14(13):697-9. PubMed ID: 19752940 [TBL] [Abstract][Full Text] [Related]
5. Photorefractive effect in a BaTiO(3) crystal at the 1.5-microm wavelength regime by two-photon absorption. Horowitz M; Fischer B; Barad Y; Silberberg Y Opt Lett; 1996 Aug; 21(15):1120-2. PubMed ID: 19876272 [TBL] [Abstract][Full Text] [Related]
6. Fanning effects in photorefractive crystals. Hong YH; Xie P; Dai JH; Zhu Y; Yang HG; Zhang HJ Opt Lett; 1993 May; 18(10):772-4. PubMed ID: 19802268 [TBL] [Abstract][Full Text] [Related]
11. Tracking novelty filter at 780 nm based on a photorefractive polymer in a two-beam coupling geometry. Hendrickx E; Van Steenwinckel D; Persoons A Appl Opt; 2001 Mar; 40(9):1412-6. PubMed ID: 18357130 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of the signal-to-background ratio in photorefractive two-wave mixing by mutually incoherent two-beam coupling. Breugnot S; Dolfi D; Rajbenbach H; Huignard JP; Defour M Opt Lett; 1994 Jul; 19(14):1070-2. PubMed ID: 19844536 [TBL] [Abstract][Full Text] [Related]
13. High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals. Imbert B; Rajbenbach H; Mallick S; Herriau JP; Huignard JP Opt Lett; 1988 Apr; 13(4):327-9. PubMed ID: 19745888 [TBL] [Abstract][Full Text] [Related]
14. Simple methods of measuring the net photorefractive phase shift and coupling constant. Hofneister R; Yariv A; Kewitsch A; Yagi S Opt Lett; 1993 Apr; 18(7):488-90. PubMed ID: 19802176 [TBL] [Abstract][Full Text] [Related]
15. Long-term continuous readout of a photorefractive memory with BaTiO(3) postamplification. Colin J; Bann S; Rajbenbach H; Huignard JP Appl Opt; 1997 Dec; 36(35):9304-8. PubMed ID: 18264489 [TBL] [Abstract][Full Text] [Related]
16. Picosecond photoinduced absorption in photorefractive BaTiO(3). Ye P; Blouin A; Demers C; Roberge MM; Wu X Opt Lett; 1991 Jul; 16(13):980-2. PubMed ID: 19776849 [TBL] [Abstract][Full Text] [Related]
17. Energy transfer between injection-locked single-mode diode lasers by two-beam coupling in BaTiO(3). Christian WR; Beckwith PH; McMichael I Opt Lett; 1989 Jan; 14(1):81-3. PubMed ID: 19749830 [TBL] [Abstract][Full Text] [Related]
18. Enhanced photorefractive performance from 45 degrees -cut BaTiO(3). Ford JE; Fainman Y; Lee SH Appl Opt; 1989 Nov; 28(22):4808-15. PubMed ID: 20555954 [TBL] [Abstract][Full Text] [Related]
19. Photorefractive beam-steering system that uses energy transfer in a BaTiO(3) crystal for a fiber-array interconnect. Mathey P; Mercier R; Pauliat G; Roosen G; Gravey P Appl Opt; 1995 Dec; 34(35):8220-9. PubMed ID: 21068939 [TBL] [Abstract][Full Text] [Related]
20. Measurement of the complex polarizability of electron traps in Bi(12)SiO(20) by a moving-grating technique. Xia P; Jonathan JM; Partanen JP; Hellwarth RW Opt Lett; 1993 Nov; 18(21):1780-2. PubMed ID: 19829402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]