BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 19739208)

  • 1. The implications of (2S,4S)-hydroxyproline 4-O-glycosylation for prolyl amide isomerization.
    Owens NW; Lee A; Marat K; Schweizer F
    Chemistry; 2009 Oct; 15(40):10649-57. PubMed ID: 19739208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3'(S)-hydroxy-5'-hydroxymethylproline hybrids: influence of a C-5'-hydroxymethyl substituent on the thermodynamics and kinetics of prolyl amide cis/trans isomerization.
    Zhang K; Teklebrhan RB; Schreckenbach G; Wetmore S; Schweizer F
    J Org Chem; 2009 May; 74(10):3735-43. PubMed ID: 19354261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational study of the hydroxyproline-O-glycosidic linkage: sugar-peptide orientation and prolyl amide isomerization in (α/β)-galactosylated 4(R/S)-hydroxyproline.
    Naziga EB; Schweizer F; Wetmore SD
    J Phys Chem B; 2012 Jan; 116(2):860-71. PubMed ID: 22148719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein.
    Zheng TY; Lin YJ; Horng JC
    Biochemistry; 2010 May; 49(19):4255-63. PubMed ID: 20405858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides.
    Taylor CM; Hardré R; Edwards PJ
    J Org Chem; 2005 Feb; 70(4):1306-15. PubMed ID: 15704965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glycosylation on cis/trans isomerization of prolines in IgA1-hinge peptide.
    Narimatsu Y; Kubota T; Furukawa S; Morii H; Narimatsu H; Yamasaki K
    J Am Chem Soc; 2010 Apr; 132(16):5548-9. PubMed ID: 20355726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glycosylation of (2S,4R)-4-hydroxyproline on the conformation, kinetics, and thermodynamics of prolyl amide isomerization.
    Owens NW; Braun C; O'Neil JD; Marat K; Schweizer F
    J Am Chem Soc; 2007 Sep; 129(38):11670-1. PubMed ID: 17764180
    [No Abstract]   [Full Text] [Related]  

  • 8. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of serine O-glycosylation on cis-trans proline isomerization.
    Pao YL; Wormarld MR; Dwek RA; Lellouch AC
    Biochem Biophys Res Commun; 1996 Feb; 219(1):157-62. PubMed ID: 8619800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices.
    Owens NW; Stetefeld J; Lattová E; Schweizer F
    J Am Chem Soc; 2010 Apr; 132(14):5036-42. PubMed ID: 20334378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aberrance of the 4S diastereomer of 4-hydroxyproline.
    Shoulders MD; Kotch FW; Choudhary A; Guzei IA; Raines RT
    J Am Chem Soc; 2010 Aug; 132(31):10857-65. PubMed ID: 20681719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of N-terminal residue stereochemistry on the prolyl amide geometry and the conformation of 5-tert-butylproline type VI beta-turn mimics.
    Halab L; Lubell WD
    J Pept Sci; 2001 Feb; 7(2):92-104. PubMed ID: 11277501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation.
    Meng HY; Thomas KM; Lee AE; Zondlo NJ
    Biopolymers; 2006; 84(2):192-204. PubMed ID: 16208767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic control of amide cis-trans isomerism via the aromatic-prolyl interaction.
    Thomas KM; Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Feb; 128(7):2216-7. PubMed ID: 16478167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering.
    Tang HC; Lin YJ; Horng JC
    Proteins; 2014 Jan; 82(1):67-76. PubMed ID: 23839950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum mechanical and NMR studies of ring puckering and cis/trans-rotameric interconversion in prolines and hydroxyprolines.
    Aliev AE; Bhandal S; Courtier-Murias D
    J Phys Chem A; 2009 Oct; 113(40):10858-65. PubMed ID: 19757781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of the steric effects of 5-tert-butylproline on the conformation of polyproline and the cooperative nature of type II to type I helical interconversion.
    Beausoleil E; Lubell WD
    Biopolymers; 2000 Mar; 53(3):249-56. PubMed ID: 10679629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions.
    Wu WJ; Raleigh DP
    Biopolymers; 1998 Apr; 45(5):381-94. PubMed ID: 9530015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning of the prolyl trans/cis-amide rotamer population by use of C-glucosylproline hybrids.
    Owens NW; Braun C; Schweizer F
    J Org Chem; 2007 Jun; 72(13):4635-43. PubMed ID: 17536863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.