These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19739601)

  • 1. Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.
    Subramanian A; Alt AR; Dong L; Kratochvil BE; Bolognesi CR; Nelson BJ
    ACS Nano; 2009 Oct; 3(10):2953-64. PubMed ID: 19739601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of nanowire channels with unidirectional alignment and controlled length by a simple, gas-blowing-assisted, selective-transfer-printing technique.
    Kim YK; Kang PS; Kim DI; Shin G; Kim GT; Ha JS
    Small; 2009 Mar; 5(6):727-34. PubMed ID: 19197970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor.
    Olofsson N; Ek-Weis J; Eriksson A; Idda T; Campbell EE
    Nanotechnology; 2009 Sep; 20(38):385710. PubMed ID: 19713579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors.
    Kacem N; Hentz S; Pinto D; Reig B; Nguyen V
    Nanotechnology; 2009 Jul; 20(27):275501. PubMed ID: 19528678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical actuation of macroscopic carbon nanotube structures: mats and aligned ribbons.
    Suppiger D; Busato S; Ermanni P; Motta M; Windle A
    Phys Chem Chem Phys; 2009 Jul; 11(25):5180-5. PubMed ID: 19562152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ electron microscopy electromechanical characterization of a bistable NEMS device.
    Ke C; Espinosa HD
    Small; 2006 Dec; 2(12):1484-9. PubMed ID: 17193010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational nanomechanics and thermal transport in nanotubes and nanowires.
    Srivastava D; Makeev MA; Menon M; Osman M
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3628-51. PubMed ID: 19051922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromechanical actuation of composite material from carbon nanotubes and ionomeric polymer.
    Levitsky IA; Kanelos P; Euler WB
    J Chem Phys; 2004 Jul; 121(2):1058-65. PubMed ID: 15260640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of the electromechanical behavior of multiwall carbon nanotubes.
    Pantano A; Buongiorno Nardelli M
    ACS Nano; 2009 Oct; 3(10):3266-72. PubMed ID: 19772304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory.
    Lee SH; Jung Y; Agarwal R
    Nat Nanotechnol; 2007 Oct; 2(10):626-30. PubMed ID: 18654387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling law in carbon nanotube electromechanical devices.
    Lefèvre R; Goffman MF; Derycke V; Miko C; Forró L; Bourgoin JP; Hesto P
    Phys Rev Lett; 2005 Oct; 95(18):185504. PubMed ID: 16383915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices: a multiscale computational study.
    Kim YH; Jang SS; Goddard WA
    J Chem Phys; 2005 Jun; 122(24):244703. PubMed ID: 16035789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed assembly of one-dimensional nanostructures into functional networks.
    Huang Y; Duan X; Wei Q; Lieber CM
    Science; 2001 Jan; 291(5504):630-3. PubMed ID: 11158671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications.
    Lifshitz E; Brumer M; Kigel A; Sashchiuk A; Bashouti M; Sirota M; Galun E; Burshtein Z; Le Quang AQ; Ledoux-Rak I; Zyss J
    J Phys Chem B; 2006 Dec; 110(50):25356-65. PubMed ID: 17165982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density.
    Panzer MJ; Frisbie CD
    J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.
    Ma CW; Lee FW; Liao HH; Kuo WC; Yang YJ
    Sensors (Basel); 2015 Aug; 15(9):21567-80. PubMed ID: 26343682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Sliding kinetics" of single-walled carbon nanotubes on self-assembled monolayer patterns: beyond random adsorption.
    Im J; Huang L; Kang J; Lee M; Lee DJ; Rao SG; Lee NK; Hong S
    J Chem Phys; 2006 Jun; 124(22):224707. PubMed ID: 16784301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.