These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 19739658)
1. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. Koutsidis G; Simons SP; Thong YH; Haldoupis Y; Mojica-Lazaro J; Wedzicha BL; Mottram DS J Agric Food Chem; 2009 Oct; 57(19):9011-5. PubMed ID: 19739658 [TBL] [Abstract][Full Text] [Related]
2. Acrylamide and pyrazine formation in model systems containing asparagine. Koutsidis G; De la Fuente A; Dimitriou C; Kakoulli A; Wedzicha BL; Mottram DS J Agric Food Chem; 2008 Aug; 56(15):6105-12. PubMed ID: 18624441 [TBL] [Abstract][Full Text] [Related]
3. Effect of amino acids on acrylamide formation and elimination kinetics. Claeys WL; De Vleeschouwer K; Hendrickx ME Biotechnol Prog; 2005; 21(5):1525-30. PubMed ID: 16209557 [TBL] [Abstract][Full Text] [Related]
4. Correlation of acrylamide generation in thermally processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts. Ehling S; Shibamoto T J Agric Food Chem; 2005 Jun; 53(12):4813-9. PubMed ID: 15941321 [TBL] [Abstract][Full Text] [Related]
5. Effect of pyridoxamine on acrylamide formation in a glucose/asparagine model system. Arribas-Lorenzo G; Morales FJ J Agric Food Chem; 2009 Feb; 57(3):901-9. PubMed ID: 19143489 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the influence of different moisture levels on acrylamide formation/elimination reactions using multiresponse analysis. De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME J Agric Food Chem; 2008 Aug; 56(15):6460-70. PubMed ID: 18597471 [TBL] [Abstract][Full Text] [Related]
7. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. Knol JJ; van Loon WA; Linssen JP; Ruck AL; van Boekel MA; Voragen AG J Agric Food Chem; 2005 Jul; 53(15):6133-9. PubMed ID: 16029007 [TBL] [Abstract][Full Text] [Related]
8. Impact of the N-terminal amino acid on the formation of pyrazines from peptides in Maillard model systems. Van Lancker F; Adams A; De Kimpe N J Agric Food Chem; 2012 May; 60(18):4697-708. PubMed ID: 22463717 [TBL] [Abstract][Full Text] [Related]
9. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction. Stadler RH; Robert F; Riediker S; Varga N; Davidek T; Devaud S; Goldmann T; Hau J; Blank I J Agric Food Chem; 2004 Aug; 52(17):5550-8. PubMed ID: 15315399 [TBL] [Abstract][Full Text] [Related]
10. Acrylamide from Maillard reaction products. Stadler RH; Blank I; Varga N; Robert F; Hau J; Guy PA; Robert MC; Riediker S Nature; 2002 Oct; 419(6906):449-50. PubMed ID: 12368845 [TBL] [Abstract][Full Text] [Related]
11. Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems. Amrein TM; Andres L; Manzardo GG; Amado R J Agric Food Chem; 2006 Dec; 54(26):10253-61. PubMed ID: 17177568 [TBL] [Abstract][Full Text] [Related]
12. The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds. De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME J Agric Food Chem; 2010 Nov; 58(22):11740-8. PubMed ID: 20973553 [TBL] [Abstract][Full Text] [Related]
13. Acrylamide is formed in the Maillard reaction. Mottram DS; Wedzicha BL; Dodson AT Nature; 2002 Oct; 419(6906):448-9. PubMed ID: 12368844 [TBL] [Abstract][Full Text] [Related]
14. Contribution of lipid oxidation products to acrylamide formation in model systems. Zamora R; Hidalgo FJ J Agric Food Chem; 2008 Aug; 56(15):6075-80. PubMed ID: 18624449 [TBL] [Abstract][Full Text] [Related]
15. Further insight into thermally and pH-induced generation of acrylamide from glucose/asparagine model systems. Perez Locas C; Yaylayan VA J Agric Food Chem; 2008 Aug; 56(15):6069-74. PubMed ID: 18624447 [TBL] [Abstract][Full Text] [Related]
16. Formation of vinylogous compounds in model Maillard reaction systems. Stadler RH; Verzegnassi L; Varga N; Grigorov M; Studer A; Riediker S; Schilter B Chem Res Toxicol; 2003 Oct; 16(10):1242-50. PubMed ID: 14565766 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of alkylpyrazine formation in a potato model system containing added glycine. Low MY; Parker JK; Mottram DS J Agric Food Chem; 2007 May; 55(10):4087-94. PubMed ID: 17447789 [TBL] [Abstract][Full Text] [Related]
18. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Kwak EJ; Lim SI Amino Acids; 2004 Aug; 27(1):85-90. PubMed ID: 15309575 [TBL] [Abstract][Full Text] [Related]
19. Impact of harvest year on amino acids and sugars in potatoes and effect on acrylamide formation during frying. Viklund GA; Olsson KM; Sjöholm IM; Skog KI J Agric Food Chem; 2008 Aug; 56(15):6180-4. PubMed ID: 18624433 [TBL] [Abstract][Full Text] [Related]
20. Gas chromatographic investigation of acrylamide formation in browning model systems. Yasuhara A; Tanaka Y; Hengel M; Shibamoto T J Agric Food Chem; 2003 Jul; 51(14):3999-4003. PubMed ID: 12822936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]