These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19739736)

  • 1. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.
    Tillett JC; Daoud MI; Lacefield JC; Waag RC
    J Acoust Soc Am; 2009 Sep; 126(3):1231-44. PubMed ID: 19739736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A k-space method for coupled first-order acoustic propagation equations.
    Tabei M; Mast TD; Waag RC
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):53-63. PubMed ID: 11831824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A k-space method for large-scale models of wave propagation in tissue.
    Mast TD; Souriau LP; Liu DL; Tabei M; Nachman AI; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):341-54. PubMed ID: 11370348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first-order k-space model for elastic wave propagation in heterogeneous media.
    Firouzi K; Cox BT; Treeby BE; Saffari N
    J Acoust Soc Am; 2012 Sep; 132(3):1271-83. PubMed ID: 22978855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A k-space Green's function solution for acoustic initial value problems in homogeneous media with power law absorption.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2011 Jun; 129(6):3652-60. PubMed ID: 21682390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extended Fourier pseudospectral time-domain method for atmospheric sound propagation.
    Hornikx M; Waxler R; Forssén J
    J Acoust Soc Am; 2010 Oct; 128(4):1632-46. PubMed ID: 20968336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward propagation of time evolving acoustic pressure: formulation and investigation of the impulse response in time-wavenumber domain.
    Grulier V; Paillasseur S; Thomas JH; Pascal JC; Le Roux JC
    J Acoust Soc Am; 2009 Nov; 126(5):2367-78. PubMed ID: 19894820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method.
    Treeby BE; Jaros J; Rendell AP; Cox BT
    J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
    Averiyanov M; Blanc-Benon P; Cleveland RO; Khokhlova V
    J Acoust Soc Am; 2011 Apr; 129(4):1760-72. PubMed ID: 21476633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations.
    Marsden O; Bogey C; Bailly C
    J Acoust Soc Am; 2014 Mar; 135(3):1083-95. PubMed ID: 24606252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistent modeling of boundaries in acoustic finite-difference time-domain simulations.
    Häggblad J; Engquist B
    J Acoust Soc Am; 2012 Sep; 132(3):1303-10. PubMed ID: 22978858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.
    Hesford AJ; Tillett JC; Astheimer JP; Waag RC
    J Acoust Soc Am; 2014 Aug; 136(2):682-92. PubMed ID: 25096103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of ultrasonic imaging with linear arrays in causal absorptive media.
    Berkhoff AP; Thijssen JM; Homan RJ
    Ultrasound Med Biol; 1996; 22(2):245-59. PubMed ID: 8735534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method.
    Treeby BE; Tumen M; Cox BT
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):363-70. PubMed ID: 22003638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A higher-order tangent linear parabolic-equation solution of three-dimensional sound propagation.
    Lin YT
    J Acoust Soc Am; 2013 Aug; 134(2):EL251-7. PubMed ID: 23927233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.