These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19739746)

  • 1. Pitch discrimination by ferrets for simple and complex sounds.
    Walker KM; Schnupp JW; Hart-Schnupp SM; King AJ; Bizley JK
    J Acoust Soc Am; 2009 Sep; 126(3):1321-35. PubMed ID: 19739746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral timbre perception in ferrets: discrimination of artificial vowels under different listening conditions.
    Bizley JK; Walker KM; King AJ; Schnupp JW
    J Acoust Soc Am; 2013 Jan; 133(1):365-76. PubMed ID: 23297909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formant-frequency discrimination of synthesized vowels in budgerigars (Melopsittacus undulatus) and humans.
    Henry KS; Amburgey KN; Abrams KS; Idrobo F; Carney LH
    J Acoust Soc Am; 2017 Oct; 142(4):2073. PubMed ID: 29092534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of spectral cues in timbre discrimination by ferrets and humans.
    Town SM; Atilgan H; Wood KC; Bizley JK
    J Acoust Soc Am; 2015 May; 137(5):2870-83. PubMed ID: 25994714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral measures of auditory streaming in ferrets (Mustela putorius).
    Ma L; Micheyl C; Yin P; Oxenham AJ; Shamma SA
    J Comp Psychol; 2010 Aug; 124(3):317-30. PubMed ID: 20695663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty in location, level and fundamental frequency results in informational masking in a vowel discrimination task for young and elderly subjects.
    Eipert L; Selle A; Klump GM
    Hear Res; 2019 Jun; 377():142-152. PubMed ID: 30933706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formant discrimination of speech and non-speech sounds for English and Chinese listeners.
    Liu C; Tao S; Wang W; Dong Q
    J Acoust Soc Am; 2012 Sep; 132(3):EL189-95. PubMed ID: 22979831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of harmonic rank on sequential sound segregation.
    Madsen SMK; Dau T; Moore BCJ
    Hear Res; 2018 Sep; 367():161-168. PubMed ID: 30006111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does fundamental-frequency discrimination measure virtual pitch discrimination?
    Micheyl C; Divis K; Wrobleski DM; Oxenham AJ
    J Acoust Soc Am; 2010 Oct; 128(4):1930-42. PubMed ID: 20968365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition.
    Chatterjee M; Peng SC
    Hear Res; 2008 Jan; 235(1-2):143-56. PubMed ID: 18093766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dominant region for the pitch of complex tones with low fundamental frequencies.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2013 Aug; 134(2):1193-204. PubMed ID: 23927118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Just noticeable difference of tone pitch contour change for English- and Chinese-native listeners.
    Liu C
    J Acoust Soc Am; 2013 Oct; 134(4):3011-20. PubMed ID: 24116436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to perceive pitch differences.
    Demany L; Semal C
    J Acoust Soc Am; 2002 Mar; 111(3):1377-88. PubMed ID: 11931315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of age on F0 discrimination and intonation perception in simulated electric and electroacoustic hearing.
    Souza P; Arehart K; Miller CW; Muralimanohar RK
    Ear Hear; 2011 Feb; 32(1):75-83. PubMed ID: 20739892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory cortex represents both pitch judgments and the corresponding acoustic cues.
    Bizley JK; Walker KM; Nodal FR; King AJ; Schnupp JW
    Curr Biol; 2013 Apr; 23(7):620-5. PubMed ID: 23523247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Role for Auditory Corticothalamic Feedback in the Perception of Complex Sounds.
    Homma NY; Happel MFK; Nodal FR; Ohl FW; King AJ; Bajo VM
    J Neurosci; 2017 Jun; 37(25):6149-6161. PubMed ID: 28559384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioural estimates of auditory filter widths in ferrets using notched-noise maskers.
    Alves-Pinto A; Sollini J; Wells T; Sumner CJ
    J Acoust Soc Am; 2016 Feb; 139(2):EL19-24. PubMed ID: 26936579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative pitch representations and invariance to timbre.
    McPherson MJ; McDermott JH
    Cognition; 2023 Mar; 232():105327. PubMed ID: 36495710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency change detection and speech perception in cochlear implant users.
    Zhang F; Underwood G; McGuire K; Liang C; Moore DR; Fu QJ
    Hear Res; 2019 Aug; 379():12-20. PubMed ID: 31035223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.