BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19739849)

  • 1. Simulations of non-neutral slab systems with long-range electrostatic interactions in two-dimensional periodic boundary conditions.
    Ballenegger V; Arnold A; Cerdà JJ
    J Chem Phys; 2009 Sep; 131(9):094107. PubMed ID: 19739849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of molecular simulation methods to accurately represent protein-surface interactions: Method assessment for the calculation of electrostatic effects.
    Collier G; Vellore NA; Latour RA; Stuart SJ
    Biointerphases; 2009 Dec; 4(4):57-64. PubMed ID: 20408725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimal P3M algorithm for computing electrostatic energies in periodic systems.
    Ballenegger V; Cerda JJ; Lenz O; Holm Ch
    J Chem Phys; 2008 Jan; 128(3):034109. PubMed ID: 18205490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic layer correction with image charges: a linear scaling method to treat slab 2D+h systems with dielectric interfaces.
    Tyagi S; Arnold A; Holm C
    J Chem Phys; 2008 Nov; 129(20):204102. PubMed ID: 19045847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a lattice-sum method emulating nonperiodic boundary conditions for the treatment of electrostatic interactions in molecular simulations: a continuum-electrostatics study.
    Kastenholz MA; Hünenberger PH
    J Chem Phys; 2006 Mar; 124(12):124108. PubMed ID: 16599663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angular resolution and range of dipole-dipole correlations in water.
    Mathias G; Tavan P
    J Chem Phys; 2004 Mar; 120(9):4393-403. PubMed ID: 15268608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energies of ions in water and nanopores within density functional theory.
    Leung K; Marsman M
    J Chem Phys; 2007 Oct; 127(15):154722. PubMed ID: 17949206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On mesh-based Ewald methods: optimal parameters for two differentiation schemes.
    Stern HA; Calkins KG
    J Chem Phys; 2008 Jun; 128(21):214106. PubMed ID: 18537414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P3M algorithm for dipolar interactions.
    Cerdà JJ; Ballenegger V; Lenz O; Holm C
    J Chem Phys; 2008 Dec; 129(23):234104. PubMed ID: 19102523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the proper calculation of electrostatic interactions in solid-supported bilayer systems.
    Yeh IC; Wallqvist A
    J Chem Phys; 2011 Feb; 134(5):055109. PubMed ID: 21303169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation.
    Kastenholz MA; Hünenberger PH
    J Chem Phys; 2006 Jun; 124(22):224501. PubMed ID: 16784292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining the lattice-sum and reaction-field approaches for evaluating long-range electrostatic interactions in molecular simulations.
    Heinz TN; Hünenberger PH
    J Chem Phys; 2005 Jul; 123(3):34107. PubMed ID: 16080730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast multipole method for three-dimensional systems with periodic boundary condition in two directions.
    Yoshii N; Andoh Y; Okazaki S
    J Comput Chem; 2020 Apr; 41(9):940-948. PubMed ID: 31930548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competing interactions in two dimensional Coulomb systems: surface charge heterogeneities in coassembled cationic-anionic incompatible mixtures.
    Loverde SM; Velichko YS; Olvera de la Cruz M
    J Chem Phys; 2006 Apr; 124(14):144702. PubMed ID: 16626226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range electrostatic interactions in hybrid quantum and molecular mechanical dynamics using a lattice summation approach.
    Dehez F; Martins-Costa MT; Rinaldi D; Millot C
    J Chem Phys; 2005 Jun; 122(23):234503. PubMed ID: 16008458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coulomb potentials in two and three dimensions under periodic boundary conditions.
    Tyagi S
    J Chem Phys; 2005 Jan; 122(1):14101. PubMed ID: 15638636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ICMMM2D: an accurate method to include planar dielectric interfaces via image charge summation.
    Tyagi S; Arnold A; Holm C
    J Chem Phys; 2007 Oct; 127(15):154723. PubMed ID: 17949207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.
    Nam K; Gao J; York DM
    J Chem Theory Comput; 2005 Jan; 1(1):2-13. PubMed ID: 26641110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.