BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19740027)

  • 1. Identification of genes potentially involved in the biocontrol activity of Pseudozyma flocculosa.
    Marchand G; Rémus-Borel W; Chain F; Hammami W; Belzile F; Bélanger RR
    Phytopathology; 2009 Oct; 99(10):1142-9. PubMed ID: 19740027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa.
    Teichmann B; Labbé C; Lefebvre F; Bölker M; Linne U; Bélanger RR
    Mol Microbiol; 2011 Mar; 79(6):1483-95. PubMed ID: 21255122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutritional regulation and kinetics of flocculosin synthesis by Pseudozyma flocculosa.
    Hammami W; Labbé C; Chain F; Mimee B; Bélanger RR
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):307-15. PubMed ID: 18542944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta hydroxylation of glycolipids from Ustilago maydis and Pseudozyma flocculosa by an NADPH-dependent β-hydroxylase.
    Teichmann B; Lefebvre F; Labbé C; Bölker M; Linne U; Bélanger RR
    Appl Environ Microbiol; 2011 Nov; 77(21):7823-9. PubMed ID: 21926207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pseudozyma flocculosa actin promoter allows the strong expression of a recombinant protein in the Pseudozyma species.
    Neveu B; Michaud M; Belzile F; Bélanger RR
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1300-7. PubMed ID: 17225101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi.
    Hammami W; Castro CQ; Rémus-Borel W; Labbé C; Bélanger RR
    Appl Environ Microbiol; 2011 Feb; 77(3):926-33. PubMed ID: 21115715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolism of flocculosin, an antimicrobial metabolite produced by Pseudozyma flocculosa.
    Mimee B; Labbé C; Bélanger RR
    Glycobiology; 2009 Sep; 19(9):995-1001. PubMed ID: 19494348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis.
    Morita T; Fukuoka T; Imura T; Kitamoto D
    FEMS Yeast Res; 2013 Feb; 13(1):44-9. PubMed ID: 22985214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of the glyceraldehyde-3-phosphate dehydrogenase gene from Pseudozyma flocculosa and functionality of its promoter in two Pseudozyma species.
    Neveu B; Belzile F; Bélanger RR
    Antonie Van Leeuwenhoek; 2007 Aug; 92(2):245-55. PubMed ID: 17387629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal activity of flocculosin, a novel glycolipid isolated from Pseudozyma flocculosa.
    Mimee B; Labbé C; Pelletier R; Bélanger RR
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1597-9. PubMed ID: 15793149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reassessment of flocculosin-mediated biocontrol activity of Pseudozyma flocculosa through CRISPR/Cas9 gene editing.
    Santhanam P; Labbé C; Fietto LG; Bélanger RR
    Fungal Genet Biol; 2021 Aug; 153():103573. PubMed ID: 34029708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of the metabolic adaptation of the biocontrol agent Pseudozyma flocculosa leading to glycolipid production.
    Hammami W; Chain F; Michaud D; Bélanger RR
    Proteome Sci; 2010 Feb; 8():7. PubMed ID: 20181132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica.
    Morita T; Ito E; Kitamoto HK; Takegawa K; Fukuoka T; Imura T; Kitamoto D
    Yeast; 2010 Nov; 27(11):905-17. PubMed ID: 20564650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis.
    Lefebvre F; Joly DL; Labbé C; Teichmann B; Linning R; Belzile F; Bakkeren G; Bélanger RR
    Plant Cell; 2013 Jun; 25(6):1946-59. PubMed ID: 23800965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectors involved in fungal-fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent-powdery mildew-plant.
    Laur J; Ramakrishnan GB; Labbé C; Lefebvre F; Spanu PD; Bélanger RR
    New Phytol; 2018 Jan; 217(2):713-725. PubMed ID: 29044534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro antibacterial activity and antifungal mode of action of flocculosin, a membrane-active cellobiose lipid.
    Mimee B; Pelletier R; Bélanger RR
    J Appl Microbiol; 2009 Sep; 107(3):989-96. PubMed ID: 19486430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and Physiological Analysis of the Powdery Mildew Antagonist Pseudozyma flocculosa and Related Fungi.
    Avis TJ; Caron SJ; Boekhout T; Hamelin RC; Bélanger RR
    Phytopathology; 2001 Mar; 91(3):249-54. PubMed ID: 18943343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellobiose lipid with antifungal activity.
    Cheng Y; McNally DJ; Labbé C; Voyer N; Belzile F; Bélanger RR
    Appl Environ Microbiol; 2003 May; 69(5):2595-602. PubMed ID: 12732526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes.
    Hu G; Kamp A; Linning R; Naik S; Bakkeren G
    Mol Plant Microbe Interact; 2007 Jun; 20(6):637-47. PubMed ID: 17555272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of biosurfactant production in Ustilago maydis.
    Hewald S; Josephs K; Bölker M
    Appl Environ Microbiol; 2005 Jun; 71(6):3033-40. PubMed ID: 15932999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.