These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 19740036)
1. Local dispersal of Puccinia triticina and wheat canopy structure. Frezal L; Robert C; Bancal MO; Lannou C Phytopathology; 2009 Oct; 99(10):1216-24. PubMed ID: 19740036 [TBL] [Abstract][Full Text] [Related]
2. Aggressiveness components and adaptation to a host cultivar in wheat leaf rust. Pariaud B; Robert C; Goyeau H; Lannou C Phytopathology; 2009 Jul; 99(7):869-78. PubMed ID: 19522585 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Rampitsch C; Bykova NV; McCallum B; Beimcik E; Ens W Proteomics; 2006 Mar; 6(6):1897-907. PubMed ID: 16479535 [TBL] [Abstract][Full Text] [Related]
4. Fusion body formation, germ tube anastomosis, and nuclear migration during the germination of urediniospores of the wheat leaf rust fungus, Puccinia triticina. Wang X; McCallum B Phytopathology; 2009 Dec; 99(12):1355-64. PubMed ID: 19900001 [TBL] [Abstract][Full Text] [Related]
5. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth. Robert C; Bancal MO; Nicolas P; Lannou C; Ney B J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221 [TBL] [Abstract][Full Text] [Related]
6. Peculiarities of the development of Puccinia graminis f. sp. tritici on the leaf surfaces of wheat cultivars and other non-host plants differing in resistance. Andreev LN; Serezhkina GV; Plotnikova YuM Biol Bull Acad Sci USSR; 1979; 6(2):179-84. PubMed ID: 549666 [No Abstract] [Full Text] [Related]
8. A Physically Based Theoretical Model of Spore Deposition for Predicting Spread of Plant Diseases. Isard SA; Chamecki M Phytopathology; 2016 Mar; 106(3):244-53. PubMed ID: 26595112 [TBL] [Abstract][Full Text] [Related]
9. Differentiation of molecular genotypes and virulence phenotypes of Puccinia triticina from common wheat in North America. Ordoñez ME; Kolmer JA Phytopathology; 2009 Jun; 99(6):750-8. PubMed ID: 19453235 [TBL] [Abstract][Full Text] [Related]
11. Pathogenesis-related protein expression in the apoplast of wheat leaves protected against leaf rust following application of plant extracts. Naz R; Bano A; Wilson NL; Guest D; Roberts TH Phytopathology; 2014 Sep; 104(9):933-44. PubMed ID: 24624956 [TBL] [Abstract][Full Text] [Related]
12. [Cellular features of immune reaction of common wheat with Lr19 gene to brown rust fungus infection]. Plotnikova LIa Tsitologiia; 2008; 50(2):124-31. PubMed ID: 18540192 [TBL] [Abstract][Full Text] [Related]
13. Vortex-induced dispersal of a plant pathogen by raindrop impact. Kim S; Park H; Gruszewski HA; Schmale DG; Jung S Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4917-4922. PubMed ID: 30804195 [TBL] [Abstract][Full Text] [Related]
14. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Milus EA; Kristensen K; Hovmøller MS Phytopathology; 2009 Jan; 99(1):89-94. PubMed ID: 19055439 [TBL] [Abstract][Full Text] [Related]
15. [Application of hyperspectral data to the classification and identification of severity of wheat stripe rust]. Wang HG; Ma ZH; Wang T; Cai CJ; An H; Zhang LD Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1811-4. PubMed ID: 18051535 [TBL] [Abstract][Full Text] [Related]
16. Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes. Hu G; Kamp A; Linning R; Naik S; Bakkeren G Mol Plant Microbe Interact; 2007 Jun; 20(6):637-47. PubMed ID: 17555272 [TBL] [Abstract][Full Text] [Related]
17. Inoculum sources of the tan spot fungus Pyrenophora tritici-repentis in The Netherlands. Kastelein P; Köhl J; Gerlagh M; Goossen-van de Geijn HM Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):257-67. PubMed ID: 12701430 [TBL] [Abstract][Full Text] [Related]
18. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed. Reynolds AM Phytopathology; 2012 Nov; 102(11):1026-33. PubMed ID: 23046208 [TBL] [Abstract][Full Text] [Related]
19. Modelling interaction dynamics between two foliar pathogens in wheat: a multi-scale approach. Garin G; Pradal C; Fournier C; Claessen D; Houlès V; Robert C Ann Bot; 2018 Apr; 121(5):927-940. PubMed ID: 29300857 [TBL] [Abstract][Full Text] [Related]
20. [Histological observation on programmed cell death in wheat-leaf rust fungus intreaction]. Bai ZY; Wang DM; Hou CY; Han SF Shi Yan Sheng Wu Xue Bao; 2004 Aug; 37(4):329-32. PubMed ID: 15511077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]