These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium. Jung Y; Choi J; Lee W Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Geng B; Jin Z; Li T; Qi X Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139 [TBL] [Abstract][Full Text] [Related]
5. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Yuan P; Fan M; Yang D; He H; Liu D; Yuan A; Zhu J; Chen T J Hazard Mater; 2009 Jul; 166(2-3):821-9. PubMed ID: 19135796 [TBL] [Abstract][Full Text] [Related]
6. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. Chowdhury SR; Yanful EK J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797 [TBL] [Abstract][Full Text] [Related]
7. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
8. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles. Chowdhury SR; Yanful EK; Pratt AR J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142 [TBL] [Abstract][Full Text] [Related]
9. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles. Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248 [TBL] [Abstract][Full Text] [Related]
10. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Jiang W; Cai Q; Xu W; Yang M; Cai Y; Dionysiou DD; O'Shea KE Environ Sci Technol; 2014 Jul; 48(14):8078-85. PubMed ID: 24901955 [TBL] [Abstract][Full Text] [Related]
11. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. Gheju M; Balcu I J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659 [TBL] [Abstract][Full Text] [Related]
12. Removal of hexavalent chromium from aqueous solution by iron nanoparticles. Niu SF; Liu Y; Xu XH; Lou ZH J Zhejiang Univ Sci B; 2005 Oct; 6(10):1022-7. PubMed ID: 16187417 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system. Zhou X; Jing G; Lv B; Zhou Z; Zhu R Chemosphere; 2016 Oct; 160():332-41. PubMed ID: 27393969 [TBL] [Abstract][Full Text] [Related]
14. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Yuan P; Liu D; Fan M; Yang D; Zhu R; Ge F; Zhu J; He H J Hazard Mater; 2010 Jan; 173(1-3):614-21. PubMed ID: 19748178 [TBL] [Abstract][Full Text] [Related]
15. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Crane RA; Dickinson M; Popescu IC; Scott TB Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652 [TBL] [Abstract][Full Text] [Related]
16. Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier. Suzuki T; Kawai K; Moribe M; Niinae M J Hazard Mater; 2014 Aug; 278():297-303. PubMed ID: 24981681 [TBL] [Abstract][Full Text] [Related]
17. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants. Dos Santos Coelho F; Ardisson JD; Moura FC; Lago RM; Murad E; Fabris JD Chemosphere; 2008 Mar; 71(1):90-6. PubMed ID: 18061239 [TBL] [Abstract][Full Text] [Related]
18. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron. Liu T; Rao P; Lo IM Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679 [TBL] [Abstract][Full Text] [Related]
19. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters. Jiang HM; Yang T; Wang YH; Lian HZ; Hu X Talanta; 2013 Nov; 116():361-7. PubMed ID: 24148416 [TBL] [Abstract][Full Text] [Related]
20. Cr(VI) and Cr(VI)-diphenylcarbazide removal from aqueous solutions using an iron rotating disc electrode. Campos E; Barrera-Díaz C; Ureña-Núñez F; Palomar-Pardavé M Environ Technol; 2007 Jan; 28(1):1-9. PubMed ID: 17283943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]