BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19741048)

  • 1. Vascular function in grape berries across development and its relevance to apparent hydraulic isolation.
    Choat B; Gambetta GA; Shackel KA; Matthews MA
    Plant Physiol; 2009 Nov; 151(3):1677-87. PubMed ID: 19741048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discharge of surplus phloem water may be required for normal grape ripening.
    Zhang Y; Keller M
    J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.
    Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR
    Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ripening grape berries remain hydraulically connected to the shoot.
    Keller M; Smith JP; Bondada BR
    J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries.
    Chatelet DS; Rost TL; Shackel KA; Matthews MA
    J Exp Bot; 2008; 59(8):1987-96. PubMed ID: 18440931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries, and potential for backflow.
    Tilbrook J; Tyerman SD
    Funct Plant Biol; 2009 Jun; 36(6):541-550. PubMed ID: 32688668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles.
    Chitarra W; Balestrini R; Vitali M; Pagliarani C; Perrone I; Schubert A; Lovisolo C
    Planta; 2014 Apr; 239(4):887-99. PubMed ID: 24402563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress.
    Perrone I; Gambino G; Chitarra W; Vitali M; Pagliarani C; Riccomagno N; Balestrini R; Kaldenhoff R; Uehlein N; Gribaudo I; Schubert A; Lovisolo C
    Plant Physiol; 2012 Oct; 160(2):965-77. PubMed ID: 22923680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine.
    Vandeleur RK; Mayo G; Shelden MC; Gilliham M; Kaiser BN; Tyerman SD
    Plant Physiol; 2009 Jan; 149(1):445-60. PubMed ID: 18987216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography.
    Knipfer T; Fei J; Gambetta GA; McElrone AJ; Shackel KA; Matthews MA
    Plant Physiol; 2015 Aug; 168(4):1590-602. PubMed ID: 26077763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of grapevine aquaporins and expression analysis in developing berries.
    Fouquet R; Léon C; Ollat N; Barrieu F
    Plant Cell Rep; 2008 Sep; 27(9):1541-50. PubMed ID: 18560835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development.
    Chatelet DS; Rost TL; Matthews MA; Shackel KA
    J Exp Bot; 2008; 59(8):1997-2007. PubMed ID: 18440930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional xylem in the post-veraison grape berry.
    Bondada BR; Matthews MA; Shackel KA
    J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss.
    Tilbrook J; Tyerman SD
    Funct Plant Biol; 2008 May; 35(3):173-184. PubMed ID: 32688771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
    Deluc LG; Grimplet J; Wheatley MD; Tillett RL; Quilici DR; Osborne C; Schooley DA; Schlauch KA; Cushman JC; Cramer GR
    BMC Genomics; 2007 Nov; 8():429. PubMed ID: 18034876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular Connections Into the Grape Berry: The Link of Structural Investment to Seededness.
    Xiao Z; Chin S; White RG; Gourieroux AM; Pagay V; Tyerman SD; Schmidtke LM; Rogiers SY
    Front Plant Sci; 2021; 12():662433. PubMed ID: 33936151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydraulic resistance of developing Actinidia fruit.
    Mazzeo M; Dichio B; Clearwater MJ; Montanaro G; Xiloyannis C
    Ann Bot; 2013 Jul; 112(1):197-205. PubMed ID: 23658370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries.
    Clearwater MJ; Luo Z; Ong SE; Blattmann P; Thorp TG
    J Exp Bot; 2012 Mar; 63(5):1835-47. PubMed ID: 22155631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A grapevine gene encoding a guard cell K(+) channel displays developmental regulation in the grapevine berry.
    Pratelli R; Lacombe B; Torregrosa L; Gaymard F; Romieu C; Thibaud JB; Sentenac H
    Plant Physiol; 2002 Feb; 128(2):564-77. PubMed ID: 11842160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.