These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 19741093)
1. HOPS interacts with Apl5 at the vacuole membrane and is required for consumption of AP-3 transport vesicles. Angers CG; Merz AJ Mol Biol Cell; 2009 Nov; 20(21):4563-74. PubMed ID: 19741093 [TBL] [Abstract][Full Text] [Related]
2. AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. Schoppe J; Mari M; Yavavli E; Auffarth K; Cabrera M; Walter S; Fröhlich F; Ungermann C EMBO J; 2020 Oct; 39(20):e105117. PubMed ID: 32840906 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of a membrane curvature-sensing motif switches function of the HOPS subunit Vps41 in membrane tethering. Cabrera M; Langemeyer L; Mari M; Rethmeier R; Orban I; Perz A; Bröcker C; Griffith J; Klose D; Steinhoff HJ; Reggiori F; Engelbrecht-Vandré S; Ungermann C J Cell Biol; 2010 Nov; 191(4):845-59. PubMed ID: 21079247 [TBL] [Abstract][Full Text] [Related]
4. Vps41 phosphorylation and the Rab Ypt7 control the targeting of the HOPS complex to endosome-vacuole fusion sites. Cabrera M; Ostrowicz CW; Mari M; LaGrassa TJ; Reggiori F; Ungermann C Mol Biol Cell; 2009 Apr; 20(7):1937-48. PubMed ID: 19193765 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth. Jiang D; He Y; Zhou X; Cao Z; Pang L; Zhong S; Jiang L; Li R Plant Physiol; 2022 Jun; 189(3):1416-1434. PubMed ID: 35417008 [TBL] [Abstract][Full Text] [Related]
6. Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants. Brillada C; Zheng J; Krüger F; Rovira-Diaz E; Askani JC; Schumacher K; Rojas-Pierce M Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8305-E8314. PubMed ID: 30104351 [TBL] [Abstract][Full Text] [Related]
7. The Habc domain of the SNARE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion. Lürick A; Kuhlee A; Bröcker C; Kümmel D; Raunser S; Ungermann C J Biol Chem; 2015 Feb; 290(9):5405-13. PubMed ID: 25564619 [TBL] [Abstract][Full Text] [Related]
9. Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. Efe JA; Plattner F; Hulo N; Kressler D; Emr SD; Deloche O J Cell Sci; 2005 Oct; 118(Pt 20):4751-64. PubMed ID: 16219684 [TBL] [Abstract][Full Text] [Related]
10. Clathrin-dependent mechanisms modulate the subcellular distribution of class C Vps/HOPS tether subunits in polarized and nonpolarized cells. Zlatic SA; Tornieri K; L'Hernault SW; Faundez V Mol Biol Cell; 2011 May; 22(10):1699-715. PubMed ID: 21411634 [TBL] [Abstract][Full Text] [Related]
11. The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction. Ho R; Stroupe C Traffic; 2016 Oct; 17(10):1078-90. PubMed ID: 27307091 [TBL] [Abstract][Full Text] [Related]
12. The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Fischer von Mollard G; Stevens TH Mol Biol Cell; 1999 Jun; 10(6):1719-32. PubMed ID: 10359592 [TBL] [Abstract][Full Text] [Related]
13. Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Plemel RL; Lobingier BT; Brett CL; Angers CG; Nickerson DP; Paulsel A; Sprague D; Merz AJ Mol Biol Cell; 2011 Apr; 22(8):1353-63. PubMed ID: 21325627 [TBL] [Abstract][Full Text] [Related]
14. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. LaGrassa TJ; Ungermann C J Cell Biol; 2005 Jan; 168(3):401-14. PubMed ID: 15684030 [TBL] [Abstract][Full Text] [Related]
15. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. Wang CW; Stromhaug PE; Kauffman EJ; Weisman LS; Klionsky DJ J Cell Biol; 2003 Dec; 163(5):973-85. PubMed ID: 14662743 [TBL] [Abstract][Full Text] [Related]
16. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Takemoto K; Ebine K; Askani JC; Krüger F; Gonzalez ZA; Ito E; Goh T; Schumacher K; Nakano A; Ueda T Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2457-E2466. PubMed ID: 29463724 [TBL] [Abstract][Full Text] [Related]
17. The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion. Takeda K; Cabrera M; Rohde J; Bausch D; Jensen ON; Ungermann C FEBS Lett; 2008 Apr; 582(10):1558-63. PubMed ID: 18405665 [TBL] [Abstract][Full Text] [Related]
18. Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase. Brett CL; Plemel RL; Lobingier BT; Vignali M; Fields S; Merz AJ J Cell Biol; 2008 Sep; 182(6):1141-51. PubMed ID: 18809726 [TBL] [Abstract][Full Text] [Related]
19. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Sato TK; Rehling P; Peterson MR; Emr SD Mol Cell; 2000 Sep; 6(3):661-71. PubMed ID: 11030345 [TBL] [Abstract][Full Text] [Related]
20. HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Orr A; Song H; Rusin SF; Kettenbach AN; Wickner W Mol Biol Cell; 2017 Apr; 28(7):975-983. PubMed ID: 28148647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]