BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 19741113)

  • 1. Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain.
    Manitt C; Nikolakopoulou AM; Almario DR; Nguyen SA; Cohen-Cory S
    J Neurosci; 2009 Sep; 29(36):11065-77. PubMed ID: 19741113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic responses of Xenopus retinal ganglion cell axon growth cones to netrin-1 as they innervate their in vivo target.
    Shirkey NJ; Manitt C; Zuniga L; Cohen-Cory S
    Dev Neurobiol; 2012 Apr; 72(4):628-48. PubMed ID: 21858928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Netrin-1 directs dendritic growth and connectivity of vertebrate central neurons in vivo.
    Nagel AN; Marshak S; Manitt C; Santos RA; Piercy MA; Mortero SD; Shirkey-Son NJ; Cohen-Cory S
    Neural Dev; 2015 Jun; 10():14. PubMed ID: 26058786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.
    Cogen J; Cohen-Cory S
    J Neurobiol; 2000 Nov; 45(2):120-33. PubMed ID: 11018773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-binding protein Vg1RBP regulates terminal arbor formation but not long-range axon navigation in the developing visual system.
    Kalous A; Stake JI; Yisraeli JK; Holt CE
    Dev Neurobiol; 2014 Mar; 74(3):303-18. PubMed ID: 23853158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice.
    Deiner MS; Sretavan DW
    J Neurosci; 1999 Nov; 19(22):9900-12. PubMed ID: 10559399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo.
    Lom B; Cogen J; Sanchez AL; Vu T; Cohen-Cory S
    J Neurosci; 2002 Sep; 22(17):7639-49. PubMed ID: 12196587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
    Sanchez AL; Matthews BJ; Meynard MM; Hu B; Javed S; Cohen Cory S
    Development; 2006 Jul; 133(13):2477-86. PubMed ID: 16728478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development.
    Yates PA; Roskies AL; McLaughlin T; O'Leary DD
    J Neurosci; 2001 Nov; 21(21):8548-63. PubMed ID: 11606643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
    Hu B; Nikolakopoulou AM; Cohen-Cory S
    Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish.
    Leu B; Koch E; Schmidt JT
    Dev Neurobiol; 2010 Nov; 70(13):897-911. PubMed ID: 20669323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia.
    Deiner MS; Kennedy TE; Fazeli A; Serafini T; Tessier-Lavigne M; Sretavan DW
    Neuron; 1997 Sep; 19(3):575-89. PubMed ID: 9331350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.
    Witte S; Stier H; Cline HT
    J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic maturation of the Xenopus retinotectal system: effects of brain-derived neurotrophic factor on synapse ultrastructure.
    Nikolakopoulou AM; Meynard MM; Marshak S; Cohen-Cory S
    J Comp Neurol; 2010 Apr; 518(7):972-89. PubMed ID: 20127801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF.
    Alsina B; Vu T; Cohen-Cory S
    Nat Neurosci; 2001 Nov; 4(11):1093-101. PubMed ID: 11593233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.
    Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP
    J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish.
    Tokuoka H; Yoshida T; Matsuda N; Mishina M
    J Neurosci; 2002 Dec; 22(23):10324-32. PubMed ID: 12451132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.