These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19741680)

  • 21. Phylogenetic analysis of 48 gene families revealing relationships between hagfishes, lampreys, and Gnathostomata.
    Yu S; Zhang W; Li L; Huang H; Ma F; Li Q
    J Genet Genomics; 2008 May; 35(5):285-90. PubMed ID: 18499072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macrophage migration inhibitory factor (MIF) of jawed and jawless fishes: implications for its evolutionary origin.
    Sato A; Uinuk-ool TS; Kuroda N; Mayer WE; Takezaki N; Dongak R; Figueroa F; Cooper MD; Klein J
    Dev Comp Immunol; 2003 May; 27(5):401-12. PubMed ID: 12631522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclostome studies in the context of vertebrate evolution.
    McCauley DW; Kuratani S
    Zoolog Sci; 2008 Oct; 25(10):953-4. PubMed ID: 19267629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of asymmetric gene repertoire between cyclostomes and gnathostomes.
    Kuraku S
    Semin Cell Dev Biol; 2013 Feb; 24(2):119-27. PubMed ID: 23291292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of two prototypic T cell lineages.
    Das S; Li J; Hirano M; Sutoh Y; Herrin BR; Cooper MD
    Cell Immunol; 2015 Jul; 296(1):87-94. PubMed ID: 25958271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The oldest three-dimensionally preserved vertebrate neurocranium.
    Dearden RP; Lanzetti A; Giles S; Johanson Z; Jones AS; Lautenschlager S; Randle E; Sansom IJ
    Nature; 2023 Sep; 621(7980):782-787. PubMed ID: 37730987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution and ecology of retinal photoreception in early vertebrates.
    Collin SP
    Brain Behav Evol; 2010; 75(3):174-85. PubMed ID: 20733293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Central Nervous System of Jawless Vertebrates: Encephalization in Lampreys and Hagfishes.
    Salas CA; Yopak KE; Lisney TJ; Potter IC; Collin SP
    Brain Behav Evol; 2017; 89(1):33-47. PubMed ID: 28214856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes.
    Takezaki N; Figueroa F; Zaleska-Rutczynska Z; Klein J
    Mol Biol Evol; 2003 Feb; 20(2):287-92. PubMed ID: 12598696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental anatomy of lampreys.
    Richardson MK; Admiraal J; Wright GM
    Biol Rev Camb Philos Soc; 2010 Feb; 85(1):1-33. PubMed ID: 19951335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The origin of developmental mechanisms underlying vertebral elements: implications from hagfish evo-devo.
    Ota KG; Oisi Y; Fujimoto S; Kuratani S
    Zoology (Jena); 2014 Feb; 117(1):77-80. PubMed ID: 24364905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa.
    Takechi M; Takeuchi M; Ota KG; Nishimura O; Mochii M; Itomi K; Adachi N; Takahashi M; Fujimoto S; Tarui H; Okabe M; Aizawa S; Kuratani S
    J Exp Zool B Mol Dev Evol; 2011 Nov; 316(7):526-46. PubMed ID: 21809437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The brains of lampreys and hagfishes: characteristics, characters, and comparisons.
    Wicht H
    Brain Behav Evol; 1996; 48(5):248-61. PubMed ID: 8932866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hagfish (cyclostomata, vertebrata): searching for the ancestral developmental plan of vertebrates.
    Kuratani S; Ota KG
    Bioessays; 2008 Feb; 30(2):167-72. PubMed ID: 18197595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sperm nuclear basic proteins (SNBPs) of agnathans and chondrichthyans: variability and evolution of sperm proteins in fish.
    Saperas N; Chiva M; Pfeiffer DC; Kasinsky HE; Ausió J
    J Mol Evol; 1997 Apr; 44(4):422-31. PubMed ID: 9089082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes.
    Kuraku S; Hoshiyama D; Katoh K; Suga H; Miyata T
    J Mol Evol; 1999 Dec; 49(6):729-35. PubMed ID: 10594174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary implications of lactate dehydrogenases (LDHs) of hagfishes compared to lampreys: LDH cDNA sequences from Eptatretus burgeri, Paramyxine atami and Eptatretus okinoseanus.
    Nishiguchi Y
    Zoolog Sci; 2008 May; 25(5):475-9. PubMed ID: 18558799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The lamprey in evolutionary studies.
    Osório J; Rétaux S
    Dev Genes Evol; 2008 May; 218(5):221-35. PubMed ID: 18274775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of myelin sheaths: both lamprey and hagfish lack myelin.
    Bullock TH; Moore JK; Fields RD
    Neurosci Lett; 1984 Jul; 48(2):145-8. PubMed ID: 6483278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-ammocoete larvae of Palaeozoic stem lampreys.
    Miyashita T; Gess RW; Tietjen K; Coates MI
    Nature; 2021 Mar; 591(7850):408-412. PubMed ID: 33692547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.