These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An investigation of exciton behavior in type-II self-assembled GaSb/GaAs quantum dots. Qiu F; Qiu W; Li Y; Wang X; Zhang Y; Zhou X; Lv Y; Sun Y; Deng H; Hu S; Dai N; Wang C; Yang Y; Zhuang Q; Hayne M; Krier A Nanotechnology; 2016 Feb; 27(6):065602. PubMed ID: 26684716 [TBL] [Abstract][Full Text] [Related]
4. Optical nonlinearities in Al(x)Ga(1-x)As/GaAs asymmetric coupled quantum wells. Le HQ; Hryniewicz JV; Goodhue WD; Mims VA Opt Lett; 1988 Oct; 13(10):859-61. PubMed ID: 19746059 [TBL] [Abstract][Full Text] [Related]
5. Single-Photon Superradiance from a Quantum Dot. Tighineanu P; Daveau RS; Lehmann TB; Beere HE; Ritchie DA; Lodahl P; Stobbe S Phys Rev Lett; 2016 Apr; 116(16):163604. PubMed ID: 27152804 [TBL] [Abstract][Full Text] [Related]
6. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. Zieliński M J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261 [TBL] [Abstract][Full Text] [Related]
7. Screening effect on the exciton mediated nonlinear optical susceptibility of semiconductor quantum dots. Bautista JE; Lyra ML; Lima RP Opt Express; 2014 Nov; 22(23):28270-5. PubMed ID: 25402068 [TBL] [Abstract][Full Text] [Related]
8. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity. Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330 [TBL] [Abstract][Full Text] [Related]
10. Excitonic effects on the second-order nonlinear optical properties of semi-spherical quantum dots. Flórez J; Camacho A Nanoscale Res Lett; 2011 Mar; 6(1):268. PubMed ID: 21711791 [TBL] [Abstract][Full Text] [Related]
11. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987 [TBL] [Abstract][Full Text] [Related]
12. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit. Tilchin J; Rabouw FT; Isarov M; Vaxenburg R; Van Dijk-Moes RJ; Lifshitz E; Vanmaekelbergh D ACS Nano; 2015 Aug; 9(8):7840-5. PubMed ID: 26181051 [TBL] [Abstract][Full Text] [Related]
13. A theoretical study of exciton energy levels in laterally coupled quantum dots. Barticevic Z; Pacheco M; Duque CA; Oliveira LE J Phys Condens Matter; 2009 Oct; 21(40):405801. PubMed ID: 21832423 [TBL] [Abstract][Full Text] [Related]
14. Low density MOVPE grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths. Richter D; Hafenbrak R; Jöns KD; Schulz WM; Eichfelder M; Heldmaier M; Rossbach R; Jetter M; Michler P Nanotechnology; 2010 Mar; 21(12):125606. PubMed ID: 20203350 [TBL] [Abstract][Full Text] [Related]
15. Homogeneous Linewidths in the Optical Spectrum of a Single Gallium Arsenide Quantum Dot. Gammon D; Snow ES; Shanabrook BV; Katzer DS; Park D Science; 1996 Jul; 273(5271):87-90. PubMed ID: 8688056 [TBL] [Abstract][Full Text] [Related]
16. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress. Gong M; Zhang W; Guo GC; He L Phys Rev Lett; 2011 Jun; 106(22):227401. PubMed ID: 21702632 [TBL] [Abstract][Full Text] [Related]
17. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field. Beirne GJ; Hermannstädter C; Wang L; Rastelli A; Schmidt OG; Michler P Phys Rev Lett; 2006 Apr; 96(13):137401. PubMed ID: 16712031 [TBL] [Abstract][Full Text] [Related]
18. Size dependence of the multiple exciton generation rate in CdSe quantum dots. Lin Z; Franceschetti A; Lusk MT ACS Nano; 2011 Apr; 5(4):2503-11. PubMed ID: 21355556 [TBL] [Abstract][Full Text] [Related]
19. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells. Elsehrawy F; Niemi T; Cappelluti F Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305 [TBL] [Abstract][Full Text] [Related]
20. Exciton multiplication from first principles. Jaeger HM; Hyeon-Deuk K; Prezhdo OV Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]