These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19743635)

  • 21. Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation.
    Collantes I; Asin G; Moreno JC; Pons JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4855-8. PubMed ID: 23367015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.
    Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.
    Tsukahara A; Hasegawa Y; Eguchi K; Sankai Y
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):308-18. PubMed ID: 25350933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A preliminary investigation of powered prostheses for improved walking biomechanics in bilateral transfemoral amputees.
    Lawson BE; Huff A; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4164-7. PubMed ID: 23366845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training.
    Dohring ME; Daly JJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):310-3. PubMed ID: 18586610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel mechatronic body weight support system.
    Frey M; Colombo G; Vaglio M; Bucher R; Jörg M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):311-21. PubMed ID: 17009491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic motion planning for the design of robotic gait rehabilitation.
    Wang CY; Bobrow JE; Reinkensmeyer DJ
    J Biomech Eng; 2005 Aug; 127(4):672-9. PubMed ID: 16121538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supervisory controller design for a robot-assisted reach-to-grasp rehabilitation task.
    Wang F; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4258-61. PubMed ID: 19163653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Path control: a method for patient-cooperative robot-aided gait rehabilitation.
    Duschau-Wicke A; von Zitzewitz J; Caprez A; Lunenburger L; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):38-48. PubMed ID: 20194054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Standing-up robot: an assistive rehabilitative device for training and assessment.
    Kamnik R; Bajd T
    J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion.
    Agrawal SK; Fattah A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):157-65. PubMed ID: 15218930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A modular rehabilitation system with enhanced functionality and safety to support improved recovery from injury and quality of life.
    Smith JD; West AA
    Proc Inst Mech Eng H; 2008 Aug; 222(6):947-58. PubMed ID: 18935811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficacy of gait trainer as an adjunct to traditional physical therapy on walking performance in hemiparetic cerebral palsied children: a randomized controlled trial.
    Gharib NM; El-Maksoud GM; Rezk-Allah SS
    Clin Rehabil; 2011 Oct; 25(10):924-34. PubMed ID: 21427153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.
    Fang J; Vuckovic A; Galen S; Cossar C; Conway BA; Hunt KJ
    Technol Health Care; 2014 Jan; 22(2):273-88. PubMed ID: 24898868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults.
    Lee HJ; Lee S; Chang WH; Seo K; Shim Y; Choi BO; Ryu GH; Kim YH
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1549-1557. PubMed ID: 28186902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.