These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19743635)

  • 41. Computer control of a powered two degree freedom reciprocating gait orthosis.
    Nouri BM; Zaidan A
    ISA Trans; 2006 Apr; 45(2):249-58. PubMed ID: 16649569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.
    Blaya JA; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):24-31. PubMed ID: 15068184
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A patient transfer apparatus between bed and stretcher.
    Wang H; Kasagami F
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):60-7. PubMed ID: 18270082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
    Park YL; Chen BR; PĂ©rez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R
    Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A multi-DOF robotic exoskeleton interface for hand motion assistance.
    Iqbal J; Tsagarakis NG; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1575-8. PubMed ID: 22254623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression.
    Rocon E; Belda-Lois JM; Ruiz AF; Manto M; Moreno JC; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):367-78. PubMed ID: 17894269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A running controller for a powered transfemoral prosthesis.
    Huff AM; Lawson BE; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4168-71. PubMed ID: 23366846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An embedded controller for a 7-degree of freedom prosthetic arm.
    Tenore F; Armiger RS; Vogelstein RJ; Wenstrand DS; Harshbarger SD; Englehart K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():185-8. PubMed ID: 19162624
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined robotic-aided gait training and physical therapy improve functional abilities and hip kinematics during gait in children and adolescents with acquired brain injury.
    Beretta E; Romei M; Molteni E; Avantaggiato P; Strazzer S
    Brain Inj; 2015; 29(7-8):955-62. PubMed ID: 25915458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A special purpose embedded system for neural machine interface for artificial legs.
    Zhang X; Huang H; Yang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5207-10. PubMed ID: 22255511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of body weight support gait training system using antagonistic bi-articular muscle model.
    Shibata Y; Imai S; Nobutomo T; Miyoshi T; Yamamoto S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4468-71. PubMed ID: 21095773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing service delivering, improving quality of life, preserving independence through assistive technology.
    Annicchiarico R
    Stud Health Technol Inform; 2012; 180():14-8. PubMed ID: 22874143
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Smart life support: model-based design and control of life-supporting systems.
    Leonhardt S; Hexamer M; Simanski O
    Biomed Tech (Berl); 2009 Oct; 54(5):229-31. PubMed ID: 19807286
    [No Abstract]   [Full Text] [Related]  

  • 57. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
    Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ROBOT - Assisted Rehabilitation in Patients After Stroke.
    Kefaliakos A; Pliakos I; Kalokerinou A; Mechili A; Diomidous M
    Stud Health Technol Inform; 2014; 202():316. PubMed ID: 25000084
    [No Abstract]   [Full Text] [Related]  

  • 59. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rehabilitative Soft Exoskeleton for Rodents.
    Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.