These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Jiang H; Campbell G; Boughner D; Wan WK; Quantz M Med Eng Phys; 2004 May; 26(4):269-77. PubMed ID: 15121052 [TBL] [Abstract][Full Text] [Related]
4. Compression properties of polyvinyl alcohol--bacterial cellulose nanocomposite. Millon LE; Oates CJ; Wan W J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):922-9. PubMed ID: 19360889 [TBL] [Abstract][Full Text] [Related]
5. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. Millon LE; Wan WK J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):245-53. PubMed ID: 16680717 [TBL] [Abstract][Full Text] [Related]
6. Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. Millon LE; Guhados G; Wan W J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):444-52. PubMed ID: 18288695 [TBL] [Abstract][Full Text] [Related]
7. Prosthetic aortic heart valves: modeling and design. Mohammadi H; Mequanint K Med Eng Phys; 2011 Mar; 33(2):131-47. PubMed ID: 20971672 [TBL] [Abstract][Full Text] [Related]
8. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. Wan WK; Campbell G; Zhang ZF; Hui AJ; Boughner DR J Biomed Mater Res; 2002; 63(6):854-61. PubMed ID: 12418034 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Li Y; Qing S; Zhou J; Yang G Carbohydr Polym; 2014 Mar; 103():496-501. PubMed ID: 24528759 [TBL] [Abstract][Full Text] [Related]
10. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis. Kumar GV; Mathew L Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172 [TBL] [Abstract][Full Text] [Related]
11. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Karimi A; Navidbakhsh M; Beigzadeh B Tissue Cell; 2014 Feb; 46(1):97-102. PubMed ID: 24405852 [TBL] [Abstract][Full Text] [Related]
12. Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Cazón P; Velázquez G; Vázquez M Carbohydr Polym; 2019 Jul; 216():72-85. PubMed ID: 31047084 [TBL] [Abstract][Full Text] [Related]
13. A coupled fluid-structure finite element model of the aortic valve and root. Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821 [TBL] [Abstract][Full Text] [Related]
15. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. Pan Y; Xiong D J Mater Sci Mater Med; 2009 Jun; 20(6):1291-7. PubMed ID: 19132507 [TBL] [Abstract][Full Text] [Related]
17. Proposed percutaneous aortic valve prosthesis made of cryogel. Mohammadi H; Goode D; Fradet G; Mequanint K Proc Inst Mech Eng H; 2019 May; 233(5):515-524. PubMed ID: 30894068 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of reinforced papers using nano bacterial cellulose. Tabarsa T; Sheykhnazari S; Ashori A; Mashkour M; Khazaeian A Int J Biol Macromol; 2017 Aug; 101():334-340. PubMed ID: 28341173 [TBL] [Abstract][Full Text] [Related]
19. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol). Degirmenbasi N; Kalyon DM; Birinci E Colloids Surf B Biointerfaces; 2006 Mar; 48(1):42-9. PubMed ID: 16490348 [TBL] [Abstract][Full Text] [Related]
20. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]