BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19743813)

  • 1. Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data.
    Redestig H; Fukushima A; Stenlund H; Moritz T; Arita M; Saito K; Kusano M
    Anal Chem; 2009 Oct; 81(19):7974-80. PubMed ID: 19743813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equating, or correction for between-block effects with application to body fluid LC-MS and NMR metabolomics data sets.
    Draisma HH; Reijmers TH; van der Kloet F; Bobeldijk-Pastorova I; Spies-Faber E; Vogels JT; Meulman JJ; Boomsma DI; van der Greef J; Hankemeier T
    Anal Chem; 2010 Feb; 82(3):1039-46. PubMed ID: 20052990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping.
    van der Kloet FM; Bobeldijk I; Verheij ER; Jellema RH
    J Proteome Res; 2009 Nov; 8(11):5132-41. PubMed ID: 19754161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normalization of measured stable isotopic compositions to isotope reference scales--a review.
    Paul D; Skrzypek G; Fórizs I
    Rapid Commun Mass Spectrom; 2007; 21(18):3006-14. PubMed ID: 17705258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error propagation in normalization of stable isotope data: a Monte Carlo analysis.
    Skrzypek G; Sadler R; Paul D
    Rapid Commun Mass Spectrom; 2010 Sep; 24(18):2697-705. PubMed ID: 20814975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correcting for the effects of natural abundance in stable isotope resolved metabolomics experiments involving ultra-high resolution mass spectrometry.
    Moseley HN
    BMC Bioinformatics; 2010 Mar; 11():139. PubMed ID: 20236542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of peak picking quality in LC-MS metabolomics data.
    Brodsky L; Moussaieff A; Shahaf N; Aharoni A; Rogachev I
    Anal Chem; 2010 Nov; 82(22):9177-87. PubMed ID: 20977194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative normalization and comparative analysis for metabolic fingerprinting by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.
    Almstetter MF; Appel IJ; Gruber MA; Lottaz C; Timischl B; Spang R; Dettmer K; Oefner PJ
    Anal Chem; 2009 Jul; 81(14):5731-9. PubMed ID: 19522528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotopologue ratio normalization for non-targeted metabolomics.
    Weindl D; Wegner A; Jäger C; Hiller K
    J Chromatogr A; 2015 Apr; 1389():112-9. PubMed ID: 25748542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics.
    Broeckling CD; Reddy IR; Duran AL; Zhao X; Sumner LW
    Anal Chem; 2006 Jul; 78(13):4334-41. PubMed ID: 16808440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions.
    Kueger S; Steinhauser D; Willmitzer L; Giavalisco P
    Plant J; 2012 Apr; 70(1):39-50. PubMed ID: 22449042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple data-reduction method for high-resolution LC-MS data in metabolomics.
    Scheltema R; Decuypere S; Dujardin J; Watson D; Jansen R; Breitling R
    Bioanalysis; 2009 Dec; 1(9):1551-7. PubMed ID: 21083103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometry based metabolomics and enzymatic assays for functional genomics.
    Baran R; Reindl W; Northen TR
    Curr Opin Microbiol; 2009 Oct; 12(5):547-52. PubMed ID: 19695948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TOPPView: an open-source viewer for mass spectrometry data.
    Sturm M; Kohlbacher O
    J Proteome Res; 2009 Jul; 8(7):3760-3. PubMed ID: 19425593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of sampling strategies for gas chromatography-mass spectrometry (GC-MS) based metabolomics of cyanobacteria.
    Krall L; Huege J; Catchpole G; Steinhauser D; Willmitzer L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):2952-60. PubMed ID: 19631594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral relative standard deviation: a practical benchmark in metabolomics.
    Parsons HM; Ekman DR; Collette TW; Viant MR
    Analyst; 2009 Mar; 134(3):478-85. PubMed ID: 19238283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics for mass spectrometry-based metabolomics.
    Enot DP; Haas B; Weinberger KM
    Methods Mol Biol; 2011; 719():351-75. PubMed ID: 21370092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Web-based resources for mass-spectrometry-based metabolomics: a user's guide.
    Tohge T; Fernie AR
    Phytochemistry; 2009 Mar; 70(4):450-6. PubMed ID: 19285697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of mass spectrometry-based metabolomics data.
    Smilde AK; van der Werf MJ; Bijlsma S; van der Werff-van der Vat BJ; Jellema RH
    Anal Chem; 2005 Oct; 77(20):6729-36. PubMed ID: 16223263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas.
    Giavalisco P; Hummel J; Lisec J; Inostroza AC; Catchpole G; Willmitzer L
    Anal Chem; 2008 Dec; 80(24):9417-25. PubMed ID: 19072260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.