These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19743852)

  • 1. Crystallographic tailoring of graphene by nonmetal SiO(x) nanoparticles.
    Gao L; Ren W; Liu B; Wu ZS; Jiang C; Cheng HM
    J Am Chem Soc; 2009 Oct; 131(39):13934-6. PubMed ID: 19743852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films.
    Ago H; Tanaka I; Ogawa Y; Yunus RM; Tsuji M; Hibino H
    ACS Nano; 2013 Dec; 7(12):10825-33. PubMed ID: 24206265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From graphene to graphene ribbons: atomically precise cutting via hydrogenation pseudo-crack.
    Qi C; Peng W; Zhou J; Yi L; Wang J; Zhang Y
    Nanotechnology; 2020 Oct; 31(41):415705. PubMed ID: 32369784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire.
    Ago H; Ito Y; Mizuta N; Yoshida K; Hu B; Orofeo CM; Tsuji M; Ikeda K; Mizuno S
    ACS Nano; 2010 Dec; 4(12):7407-14. PubMed ID: 21105741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement.
    Jasuja K; Berry V
    ACS Nano; 2009 Aug; 3(8):2358-66. PubMed ID: 19702325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and electronic properties of hydrogenated few layer graphene.
    Zhu L; Hu H; Chen Q; Wang S; Wang J; Ding F
    Nanotechnology; 2011 May; 22(18):185202. PubMed ID: 21427467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.
    Morelos-Gómez A; Vega-Díaz SM; González VJ; Tristán-López F; Cruz-Silva R; Fujisawa K; Muramatsu H; Hayashi T; Mi X; Shi Y; Sakamoto H; Khoerunnisa F; Kaneko K; Sumpter BG; Kim YA; Meunier V; Endo M; Muñoz-Sandoval E; Terrones M
    ACS Nano; 2012 Mar; 6(3):2261-72. PubMed ID: 22360783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-catalyst-free growth of single-walled carbon nanotubes on substrates.
    Huang S; Cai Q; Chen J; Qian Y; Zhang L
    J Am Chem Soc; 2009 Feb; 131(6):2094-5. PubMed ID: 19159295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale solution synthesis of narrow graphene nanoribbons.
    Vo TH; Shekhirev M; Kunkel DA; Morton MD; Berglund E; Kong L; Wilson PM; Dowben PA; Enders A; Sinitskii A
    Nat Commun; 2014; 5():3189. PubMed ID: 24510014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of graphene nanoribbons under low-voltage electron irradiation.
    Zhu W; Wang H; Yang W
    Nanoscale; 2012 Aug; 4(15):4555-61. PubMed ID: 22699261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes.
    Kim K; Sussman A; Zettl A
    ACS Nano; 2010 Mar; 4(3):1362-6. PubMed ID: 20131856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature.
    Wang J; Ma L; Yuan Q; Zhu L; Ding F
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8041-5. PubMed ID: 21761515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles.
    Wei J; Xu Z; Wang H; Tian X; Yang S; Wang L; Wang W; Bai X
    Nanotechnology; 2014 Nov; 25(46):465709. PubMed ID: 25361213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film.
    Ago H; Ito Y; Tsuji M; Ikeda K
    Nanoscale; 2012 Aug; 4(16):5178-82. PubMed ID: 22806442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.