These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 19744237)
1. Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria. Lyimo TJ; Pol A; Harhangi HR; Jetten MS; Op den Camp HJ FEMS Microbiol Ecol; 2009 Dec; 70(3):483-92. PubMed ID: 19744237 [TBL] [Abstract][Full Text] [Related]
2. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
3. Thiol methylation potential in anoxic, low-pH wetland sediments and its relationship with dimethylsulfide production and organic carbon cycling. Stets EG; Hines ME; Kiene RP FEMS Microbiol Ecol; 2004 Jan; 47(1):1-11. PubMed ID: 19712341 [TBL] [Abstract][Full Text] [Related]
4. Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment. Ramamoorthy S; Piotrowski JS; Langner HW; Holben WE; Morra MJ; Rosenzweig RF J Environ Qual; 2009; 38(2):675-84. PubMed ID: 19244488 [TBL] [Abstract][Full Text] [Related]
5. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Moran JJ; Beal EJ; Vrentas JM; Orphan VJ; Freeman KH; House CH Environ Microbiol; 2008 Jan; 10(1):162-73. PubMed ID: 17903217 [TBL] [Abstract][Full Text] [Related]
6. Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment. Sallam A; Steinbüchel A Int J Syst Evol Microbiol; 2009 Jul; 59(Pt 7):1661-5. PubMed ID: 19542123 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Lomans BP; den Camp HJ; Pol A; Vogels GD Appl Environ Microbiol; 1999 Feb; 65(2):438-43. PubMed ID: 9925565 [TBL] [Abstract][Full Text] [Related]
8. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
9. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
10. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Miralles G; Grossi V; Acquaviva M; Duran R; Claude Bertrand J; Cuny P Chemosphere; 2007 Jul; 68(7):1327-34. PubMed ID: 17337033 [TBL] [Abstract][Full Text] [Related]
11. Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Hayes LA; Lovley DR Microb Ecol; 2002 Jan; 43(1):134-45. PubMed ID: 11984635 [TBL] [Abstract][Full Text] [Related]
12. Microbial cycling of volatile organic sulfur compounds in anoxic environments. Lomans BP; Pol A; Op den Camp HJ Water Sci Technol; 2002; 45(10):55-60. PubMed ID: 12188577 [TBL] [Abstract][Full Text] [Related]
13. Volatile organic sulfur compounds in anaerobic sludge and sediments: biodegradation and toxicity. van Leerdam RC; de Bok FA; Lomans BP; Stams AJ; Lens PN; Janssen AJ Environ Toxicol Chem; 2006 Dec; 25(12):3101-9. PubMed ID: 17220077 [TBL] [Abstract][Full Text] [Related]
14. Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor. Balk M; Altinbaş M; Rijpstra WI; Sinninghe Damsté JS; Stams AJ Int J Syst Evol Microbiol; 2008 Jan; 58(Pt 1):110-5. PubMed ID: 18175693 [TBL] [Abstract][Full Text] [Related]
15. Spatial variability of sulfate reduction in a shallow aquifer. Musslewhite CL; Swift D; Gilpen J; McInerney MJ Environ Microbiol; 2007 Nov; 9(11):2810-9. PubMed ID: 17922764 [TBL] [Abstract][Full Text] [Related]
17. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367 [TBL] [Abstract][Full Text] [Related]
19. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Klepac-Ceraj V; Bahr M; Crump BC; Teske AP; Hobbie JE; Polz MF Environ Microbiol; 2004 Jul; 6(7):686-98. PubMed ID: 15186347 [TBL] [Abstract][Full Text] [Related]
20. Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds. Madrid VM; Aller RC; Aller JY; Chistoserdov AY FEMS Microbiol Ecol; 2006 Aug; 57(2):169-81. PubMed ID: 16867136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]