BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19744465)

  • 1. Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria.
    Aon MA; Cortassa S; Wei AC; Grunnet M; O'Rourke B
    Biochim Biophys Acta; 2010 Jan; 1797(1):71-80. PubMed ID: 19744465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria.
    Cancherini DV; Queliconi BB; Kowaltowski AJ
    Cardiovasc Res; 2007 Mar; 73(4):720-8. PubMed ID: 17208207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A.
    Sato T; Saito T; Saegusa N; Nakaya H
    Circulation; 2005 Jan; 111(2):198-203. PubMed ID: 15623543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time and charge/pH-dependent activation of K
    Malas KM; Lambert DS; Heisner JS; Camara AKS; Stowe DF
    Biochim Biophys Acta Bioenerg; 2022 Nov; 1863(8):148908. PubMed ID: 35961396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria.
    Bednarczyk P; Barker GD; Halestrap AP
    Biochim Biophys Acta; 2008 Jun; 1777(6):540-8. PubMed ID: 18471430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential.
    Heinen A; Camara AK; Aldakkak M; Rhodes SS; Riess ML; Stowe DF
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C148-56. PubMed ID: 16870831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening.
    Aldakkak M; Stowe DF; Cheng Q; Kwok WM; Camara AK
    Am J Physiol Cell Physiol; 2010 Mar; 298(3):C530-41. PubMed ID: 20053924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force.
    Lee WK; Spielmann M; Bork U; Thévenod F
    Am J Physiol Cell Physiol; 2005 Sep; 289(3):C656-64. PubMed ID: 15843441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels.
    Heinen A; Aldakkak M; Stowe DF; Rhodes SS; Riess ML; Varadarajan SG; Camara AK
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1400-7. PubMed ID: 17513497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the Large-Conductance Ca
    Sek A; Kampa RP; Kulawiak B; Szewczyk A; Bednarczyk P
    Molecules; 2021 May; 26(11):. PubMed ID: 34072205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection.
    Wang X; Fisher PW; Xi L; Kukreja RC
    J Mol Cell Cardiol; 2008 Jan; 44(1):105-13. PubMed ID: 18021798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels.
    Bentzen BH; Nardi A; Calloe K; Madsen LS; Olesen SP; Grunnet M
    Mol Pharmacol; 2007 Oct; 72(4):1033-44. PubMed ID: 17636045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-conductance Ca²⁺-activated potassium channel in mitochondria of endothelial EA.hy926 cells.
    Bednarczyk P; Koziel A; Jarmuszkiewicz W; Szewczyk A
    Am J Physiol Heart Circ Physiol; 2013 Jun; 304(11):H1415-27. PubMed ID: 23542921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opening of mitochondrial K(ATP) channels attenuates the ouabain-induced calcium overload in mitochondria.
    Ishida H; Hirota Y; Genka C; Nakazawa H; Nakaya H; Sato T
    Circ Res; 2001 Nov; 89(10):856-8. PubMed ID: 11701611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria.
    Kowaltowski AJ; Seetharaman S; Paucek P; Garlid KD
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H649-57. PubMed ID: 11158963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opening of potassium channels protects mitochondrial function from calcium overload.
    Crestanello JA; Doliba NM; Babsky AM; Doliba NM; Niibori K; Osbakken MD; Whitman GJ
    J Surg Res; 2000 Dec; 94(2):116-23. PubMed ID: 11104651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume.
    Hansson MJ; Morota S; Teilum M; Mattiasson G; Uchino H; Elmér E
    J Biol Chem; 2010 Jan; 285(1):741-50. PubMed ID: 19880514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The direct physiological effects of mitoK(ATP) opening on heart mitochondria.
    Costa AD; Quinlan CL; Andrukhiv A; West IC; Jabůrek M; Garlid KD
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H406-15. PubMed ID: 16143645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential.
    Xu M; Wang Y; Ayub A; Ashraf M
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1295-303. PubMed ID: 11514300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The permeability of uncoupled heart mitochondria to potassium ion.
    Jung DW; Brierley GP
    J Biol Chem; 1984 Jun; 259(11):6904-11. PubMed ID: 6202687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.