BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19744530)

  • 1. Inhibition of TGF-beta1 promotes functional recovery after spinal cord injury.
    Kohta M; Kohmura E; Yamashita T
    Neurosci Res; 2009 Dec; 65(4):393-401. PubMed ID: 19744530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic alterations in the cellular composition of spinal cord white matter following contusion injury.
    Rosenberg LJ; Zai LJ; Wrathall JR
    Glia; 2005 Jan; 49(1):107-20. PubMed ID: 15390101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal changes in the expression of TGF-beta 1 and EGF in the ventral horn of the spinal cord and associated precentral gyrus in adult Rhesus monkeys subjected to cord hemisection.
    Li XL; Liu J; Wang XY; Li LY; Ni W; Zheng RY; Yang HJ; Lu YC; Qi JG; Wang TH
    J Neurol Sci; 2008 May; 268(1-2):163-71. PubMed ID: 18191945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-beta.
    Fang XQ; Fang M; Fan SW; Gu CL
    Chin Med J (Engl); 2009 Jul; 122(14):1631-5. PubMed ID: 19719963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined therapy of methylprednisolone and brain-derived neurotrophic factor promotes axonal regeneration and functional recovery after spinal cord injury in rats.
    Li L; Xu Q; Wu Y; Hu W; Gu P; Fu Z
    Chin Med J (Engl); 2003 Mar; 116(3):414-8. PubMed ID: 12781049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord.
    Prewitt CM; Niesman IR; Kane CJ; Houlé JD
    Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMP inhibition enhances axonal growth and functional recovery after spinal cord injury.
    Matsuura I; Taniguchi J; Hata K; Saeki N; Yamashita T
    J Neurochem; 2008 May; 105(4):1471-9. PubMed ID: 18221366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury.
    Popovich PG; Guan Z; Wei P; Huitinga I; van Rooijen N; Stokes BT
    Exp Neurol; 1999 Aug; 158(2):351-65. PubMed ID: 10415142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graft of pre-injured sural nerve promotes regeneration of corticospinal tract and functional recovery in rats with chronic spinal cord injury.
    Feng SQ; Zhou XF; Rush RA; Ferguson IA
    Brain Res; 2008 May; 1209():40-8. PubMed ID: 18405884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis.
    Streit WJ; Semple-Rowland SL; Hurley SD; Miller RC; Popovich PG; Stokes BT
    Exp Neurol; 1998 Jul; 152(1):74-87. PubMed ID: 9682014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RGMa inhibition promotes axonal growth and recovery after spinal cord injury.
    Hata K; Fujitani M; Yasuda Y; Doya H; Saito T; Yamagishi S; Mueller BK; Yamashita T
    J Cell Biol; 2006 Apr; 173(1):47-58. PubMed ID: 16585268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord.
    Jimenez Hamann MC; Tator CH; Shoichet MS
    Exp Neurol; 2005 Jul; 194(1):106-19. PubMed ID: 15899248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury.
    Kyoto A; Hata K; Yamashita T
    Brain Res; 2007 Dec; 1186():74-86. PubMed ID: 17996222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of transforming growth factor-beta1 and receptor mRNA after experimental spinal cord injury.
    McTigue DM; Popovich PG; Morgan TE; Stokes BT
    Exp Neurol; 2000 May; 163(1):220-30. PubMed ID: 10785461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of thrombospondin-1 and transforming growth factor-beta after spinal cord injury in the rat.
    Wang X; Chen W; Liu W; Wu J; Shao Y; Zhang X
    J Clin Neurosci; 2009 Jun; 16(6):818-21. PubMed ID: 19342245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury.
    Huang X; Kim JM; Kong TH; Park SR; Ha Y; Kim MH; Park H; Yoon SH; Park HC; Park JO; Min BH; Choi BH
    J Neurol Sci; 2009 Feb; 277(1-2):87-97. PubMed ID: 19033079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody.
    Han Q; Jin W; Xiao Z; Ni H; Wang J; Kong J; Wu J; Liang W; Chen L; Zhao Y; Chen B; Dai J
    Biomaterials; 2010 Dec; 31(35):9212-20. PubMed ID: 20869112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.