BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 19745154)

  • 1. Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor.
    Yang J; Zhang Z; Roe SM; Marshall CJ; Barford D
    Science; 2009 Sep; 325(5946):1398-402. PubMed ID: 19745154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42.
    Kintscher C; Groemping Y
    J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the selective activation of Rho GTPases by Dbl exchange factors.
    Snyder JT; Worthylake DK; Rossman KL; Betts L; Pruitt WM; Siderovski DP; Der CJ; Sondek J
    Nat Struct Biol; 2002 Jun; 9(6):468-75. PubMed ID: 12006984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins.
    Zhang B; Zhang Y; Wang Z; Zheng Y
    J Biol Chem; 2000 Aug; 275(33):25299-307. PubMed ID: 10843989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors.
    Kulkarni K; Yang J; Zhang Z; Barford D
    J Biol Chem; 2011 Jul; 286(28):25341-51. PubMed ID: 21613211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cdc42 mutant specifically activated by intersectin.
    Smith WJ; Hamel B; Yohe ME; Sondek J; Cerione RA; Snyder JT
    Biochemistry; 2005 Oct; 44(40):13282-90. PubMed ID: 16201754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
    Wang L; Zhu K; Zheng Y
    Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation mechanism of GDP from Cdc42 via DOCK9 revealed by molecular dynamics simulations.
    Kang N; Liu J; Zhao Y
    Proteins; 2019 Jun; 87(6):433-442. PubMed ID: 30714195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel intermediate of Rac GTPase activation by guanine nucleotide exchange factor.
    Zhang B; Yang L; Zheng Y
    Biochem Biophys Res Commun; 2005 Jun; 331(2):413-21. PubMed ID: 15850775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snapshots form a big picture of guanine nucleotide exchange.
    Rittinger K
    Sci Signal; 2009 Oct; 2(91):pe63. PubMed ID: 19809089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of cdc42 residues required for Guanine nucleotide exchange.
    Rossman KL; Worthylake DK; Snyder JT; Cheng L; Whitehead IP; Sondek J
    J Biol Chem; 2002 Dec; 277(52):50893-8. PubMed ID: 12401782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE.
    Buchwald G; Friebel A; Galán JE; Hardt WD; Wittinghofer A; Scheffzek K
    EMBO J; 2002 Jul; 21(13):3286-95. PubMed ID: 12093730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific recognition of Rac2 and Cdc42 by DOCK2 and DOCK9 guanine nucleotide exchange factors.
    Kwofie MA; Skowronski J
    J Biol Chem; 2008 Feb; 283(6):3088-3096. PubMed ID: 18056264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth.
    Miyamoto Y; Yamauchi J; Sanbe A; Tanoue A
    Exp Cell Res; 2007 Feb; 313(4):791-804. PubMed ID: 17196961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of small GTPases by GEFs, GAPs, and GDIs.
    Cherfils J; Zeghouf M
    Physiol Rev; 2013 Jan; 93(1):269-309. PubMed ID: 23303910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP.
    Arozarena I; Matallanas D; Crespo P
    J Biol Chem; 2001 Jun; 276(24):21878-84. PubMed ID: 11285260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.
    Côté JF; Vuori K
    Methods Enzymol; 2006; 406():41-57. PubMed ID: 16472648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanine nucleotide induced conformational change of Cdc42 revealed by hydrogen/deuterium exchange mass spectrometry.
    Yang SW; Ting HC; Lo YT; Wu TY; Huang HW; Yang CJ; Chan JF; Chuang MC; Hsu YH
    Biochim Biophys Acta; 2016 Jan; 1864(1):42-51. PubMed ID: 26542736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a DOCK180-related guanine nucleotide exchange factor that is capable of mediating a positive feedback activation of Cdc42.
    Lin Q; Yang W; Baird D; Feng Q; Cerione RA
    J Biol Chem; 2006 Nov; 281(46):35253-62. PubMed ID: 16968698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.