These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19745807)

  • 81. Structural role of a conserved active site cis proline in the Thermotoga maritima acetyl esterase from the carbohydrate esterase family 7.
    Singh MK; Manoj N
    Proteins; 2017 Apr; 85(4):694-708. PubMed ID: 28097692
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Deep sequencing of tRNA's 3'-termini sheds light on CCA-tail integrity and maturation.
    Czech A
    RNA; 2020 Feb; 26(2):199-208. PubMed ID: 31719125
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Crystal structure of butyrate kinase 2 from Thermotoga maritima, a member of the ASKHA superfamily of phosphotransferases.
    Diao J; Hasson MS
    J Bacteriol; 2009 Apr; 191(8):2521-9. PubMed ID: 19201797
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis.
    Sulzenbacher G; Bignon C; Nishimura T; Tarling CA; Withers SG; Henrissat B; Bourne Y
    J Biol Chem; 2004 Mar; 279(13):13119-28. PubMed ID: 14715651
    [TBL] [Abstract][Full Text] [Related]  

  • 85. ATP-dependent 6-phosphofructokinase from the hyperthermophilic bacterium Thermotoga maritima: characterization of an extremely thermophilic, allosterically regulated enzyme.
    Hansen T; Musfeldt M; Schönheit P
    Arch Microbiol; 2002 May; 177(5):401-9. PubMed ID: 11976749
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Thermotoga maritima-Escherichia coli chimeric topoisomerases. Answers about involvement of the carboxyl-terminal domain in DNA topoisomerase I-mediated catalysis.
    Viard T; Cossard R; Duguet M; de La Tour CB
    J Biol Chem; 2004 Jul; 279(29):30073-80. PubMed ID: 15140883
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of nucleotide substitutions within the T-loop of precursor tRNAs on interaction with ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and yeast.
    Li Z; Gillis KA; Hegg LA; Zhang J; Thurlow DL
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):49-53. PubMed ID: 8660309
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase.
    Zhang RG; Skarina T; Katz JE; Beasley S; Khachatryan A; Vyas S; Arrowsmith CH; Clarke S; Edwards A; Joachimiak A; Savchenko A
    Structure; 2001 Nov; 9(11):1095-106. PubMed ID: 11709173
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The Bacillus subtilis nucleotidyltransferase is a tRNA CCA-adding enzyme.
    Raynal LC; Krisch HM; Carpousis AJ
    J Bacteriol; 1998 Dec; 180(23):6276-82. PubMed ID: 9829937
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Solution structure of the ribosome recycling factor from Aquifex aeolicus.
    Yoshida T; Uchiyama S; Nakano H; Kashimori H; Kijima H; Ohshima T; Saihara Y; Ishino T; Shimahara H; Yoshida T; Yokose K; Ohkubo T; Kaji A; Kobayashi Y
    Biochemistry; 2001 Feb; 40(8):2387-96. PubMed ID: 11327859
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Domain structure of human nuclear DNA helicase II (RNA helicase A).
    Zhang S; Grosse F
    J Biol Chem; 1997 Apr; 272(17):11487-94. PubMed ID: 9111062
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Structural consequences of effector binding to the T state of aspartate carbamoyltransferase: crystal structures of the unligated and ATP- and CTP-complexed enzymes at 2.6-A resolution.
    Stevens RC; Gouaux JE; Lipscomb WN
    Biochemistry; 1990 Aug; 29(33):7691-701. PubMed ID: 2271528
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t6A tRNA-modification.
    Missoury S; Plancqueel S; Li de la Sierra-Gallay I; Zhang W; Liger D; Durand D; Dammak R; Collinet B; van Tilbeurgh H
    Nucleic Acids Res; 2018 Jun; 46(11):5850-5860. PubMed ID: 29741707
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme.
    de Wijn R; Hennig O; Ernst FGM; Lorber B; Betat H; Mörl M; Sauter C
    Acta Crystallogr F Struct Biol Commun; 2018 Nov; 74(Pt 11):747-753. PubMed ID: 30387781
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Genotyping bacterial and fungal pathogens using sequence variation in the gene for the CCA-adding enzyme.
    Franz P; Betat H; Mörl M
    BMC Microbiol; 2016 Mar; 16():47. PubMed ID: 26987313
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity.
    Yates LA; Durrant BP; Fleurdépine S; Harlos K; Norbury CJ; Gilbert RJ
    Nucleic Acids Res; 2015 Mar; 43(5):2968-79. PubMed ID: 25712096
    [TBL] [Abstract][Full Text] [Related]  

  • 97. CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium
    de Wijn R; Rollet K; Ernst FGM; Wellner K; Betat H; Mörl M; Sauter C
    Comput Struct Biotechnol J; 2021; 19():5845-5855. PubMed ID: 34765099
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Depletion of tRNA CCA-adding enzyme in Mycobacterium tuberculosis leads to polyadenylation of transcripts and precursor tRNAs.
    Błaszczyk E; Płociński P; Lechowicz E; Brzostek A; Dziadek B; Korycka-Machała M; Słomka M; Dziadek J
    Sci Rep; 2023 Nov; 13(1):20717. PubMed ID: 38001315
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Substrate Affinity Versus Catalytic Efficiency: Ancestral Sequence Reconstruction of tRNA Nucleotidyltransferases Solves an Enzyme Puzzle.
    Hager M; Pöhler MT; Reinhardt F; Wellner K; Hübner J; Betat H; Prohaska S; Mörl M
    Mol Biol Evol; 2022 Dec; 39(12):. PubMed ID: 36409584
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Chimeragenesis of distantly-related proteins by noncontiguous recombination.
    Smith MA; Romero PA; Wu T; Brustad EM; Arnold FH
    Protein Sci; 2013 Feb; 22(2):231-8. PubMed ID: 23225662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.