These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19745995)

  • 1. Characterization of the photorefractive effect in InP:Fe by using two-wave mixing under electric fields.
    Mainguet B
    Opt Lett; 1988 Aug; 13(8):657. PubMed ID: 19745995
    [No Abstract]   [Full Text] [Related]  

  • 2. Moving grating and intrinsic electron-hole resonance in two-wave mixing in photorefractive InP:Fe.
    Mainguet B; Guiner FL; Picoli G
    Opt Lett; 1990 Sep; 15(17):938-40. PubMed ID: 19770958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical and photorefractive properties of InP:Ti: a new photorefractive semiconductor.
    Nolte DD; Olsen DH; Monberg EM; Bridenbaugh PM; Glass AM
    Opt Lett; 1989 Nov; 14(22):1278-80. PubMed ID: 19759658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe.
    Picoli G; Gravey P; Ozkul C
    Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields.
    Ozkul C; Picoli G; Gravey P; Wolffer N
    Appl Opt; 1990 Jun; 29(18):2711-7. PubMed ID: 20567319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe.
    Chauvet M; Hawkins SA; Salamo GJ; Segev M; Bliss DF; Bryant G
    Opt Lett; 1996 Sep; 21(17):1333-5. PubMed ID: 19876343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photorefractive two-wave mixing in the presence of high-speed optical phase modulation.
    Field CT; Davidson FM
    Appl Opt; 1993 Sep; 32(27):5285-98. PubMed ID: 20856337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant two-wave mixing in photorefractive materials with the aid of dc and ac fields.
    Kalinin VA; Shcherbin K; Solymar L; Takacs J; Webb DJ
    Opt Lett; 1997 Dec; 22(24):1852-4. PubMed ID: 18188385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photorefractive semiconductor single-mode waveguides grown by gas-source molecular-beam epitaxy.
    Chauvet M; Hervé D; Mainguet B; Rébéjac B; Salaün S; Corre AL; Viallet JE
    Opt Lett; 1995 Aug; 20(15):1604-6. PubMed ID: 19862097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of subharmonics on two-wave gain in Bi(12)SiO(20) under alternating electric fields.
    Grunnet-Jepsen A; Solymar L; Kwak CH
    Opt Lett; 1994 Sep; 19(17):1299-301. PubMed ID: 19855500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric-field dependence of phase-conjugate wave-front reflectivity in reduced KNbO(3) and Bi(12)GeO(20).
    Günter PN
    Opt Lett; 1982 Jan; 7(1):10-2. PubMed ID: 19710806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-wave mixing of time-varying non-plane-wave optical fields in photorefractive materials.
    Boutsikaris L; Davidson F
    Appl Opt; 1993 Mar; 32(9):1559-66. PubMed ID: 20820286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picosecond photorefractive response of GaAs:EL2, InP:Fe, and CdTe:V.
    Valley GC; Dubard J; Smirl AL; Glass AM
    Opt Lett; 1989 Sep; 14(17):961-3. PubMed ID: 19753025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral response characterization of an InP:Fe photorefractive wavelength-self-tunable single-sideband filter.
    Vourc'h E; Hervé D
    Opt Lett; 2003 Jul; 28(13):1105-7. PubMed ID: 12879922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-field-of-view heterodyne receiver at 1.06 microm with photorefractive InP:Fe.
    Johnson B; Mandra R; Iseler GW; Clark HR
    Opt Lett; 1993 Nov; 18(21):1840-2. PubMed ID: 19829422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochromic gratings in photorefractive materials.
    Bylsma RB; Olson DH; Glass AM
    Opt Lett; 1988 Oct; 13(10):853-5. PubMed ID: 19746057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency resonances in photorefractive crystals.
    Grunnet-Jepsen A; Aubrecht I; Solymar L
    Opt Lett; 1995 Apr; 20(8):819-21. PubMed ID: 19859340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-frequency phase conjugation wave generation with the high-order nonlinear effect by nondegenerate six-wave mixing in photorefractive Fe:LiNbO(3).
    Bao C; Zhang J; Wang S
    Appl Opt; 1988 Nov; 27(21):4572-7. PubMed ID: 20539610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of applied fields on the Bragg condition and the diffraction efficiency in photorefractive crystals.
    De Vré R; Jeganathan M; Wilde JP; Hesselink L
    Opt Lett; 1994 Jun; 19(12):910-2. PubMed ID: 19844485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.