These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 19746637)

  • 1. Ligand topology tuning of iron-catalyzed hydrocarbon oxidations.
    Costas M; Que L
    Angew Chem Int Ed Engl; 2002 Jun; 41(12):2179-81. PubMed ID: 19746637
    [No Abstract]   [Full Text] [Related]  

  • 2. EPR spectroscopic trapping of the active species of nonheme iron-catalyzed oxidation.
    Lyakin OY; Bryliakov KP; Britovsek GJ; Talsi EP
    J Am Chem Soc; 2009 Aug; 131(31):10798-9. PubMed ID: 19722657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic implications of the active species involved in the oxidation of hydrocarbons by iron complexes of pyrazine-2-carboxylic acid.
    Tanase S; Marques-Gallego P; Browne WR; Hage R; Bouwman E; Feringa BL; Reedijk J
    Dalton Trans; 2008 Apr; (15):2026-33. PubMed ID: 18382780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyoxovanadometalate-catalyzed selective epoxidation of alkenes with hydrogen peroxide.
    Nakagawa Y; Kamata K; Kotani M; Yamaguchi K; Mizuno N
    Angew Chem Int Ed Engl; 2005 Aug; 44(32):5136-41. PubMed ID: 16007715
    [No Abstract]   [Full Text] [Related]  

  • 5. The reaction of a high-valent nonheme oxoiron(IV) intermediate with hydrogen peroxide.
    Braymer JJ; O'Neill KP; Rohde JU; Lim MH
    Angew Chem Int Ed Engl; 2012 May; 51(22):5376-80. PubMed ID: 22517730
    [No Abstract]   [Full Text] [Related]  

  • 6. Formation of an aqueous oxoiron(IV) complex at pH 2-6 from a nonheme iron(II) complex and H2O2.
    Bautz J; Bukowski MR; Kerscher M; Stubna A; Comba P; Lienke A; Münck E; Que L
    Angew Chem Int Ed Engl; 2006 Aug; 45(34):5681-4. PubMed ID: 16858708
    [No Abstract]   [Full Text] [Related]  

  • 7. Dioxygen activation at non-heme iron: insights from rapid kinetic studies.
    Korendovych IV; Kryatov SV; Rybak-Akimova EV
    Acc Chem Res; 2007 Jul; 40(7):510-21. PubMed ID: 17521158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H2O2 oxidations catalyzed by an iron(III) corrolazine: avoiding high-valent iron-oxido species?
    Kerber WD; Ramdhanie B; Goldberg DP
    Angew Chem Int Ed Engl; 2007; 46(20):3718-21. PubMed ID: 17427901
    [No Abstract]   [Full Text] [Related]  

  • 9. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel platform for modeling oxidative catalysis in non-heme iron oxygenases with unprecedented efficiency.
    Company A; Gómez L; Fontrodona X; Ribas X; Costas M
    Chemistry; 2008; 14(19):5727-31. PubMed ID: 18481345
    [No Abstract]   [Full Text] [Related]  

  • 11. Axial coordination of carboxylate activates the non-heme FeIV=O unit.
    Rohde JU; Que L
    Angew Chem Int Ed Engl; 2005 Apr; 44(15):2255-8. PubMed ID: 15739239
    [No Abstract]   [Full Text] [Related]  

  • 12. A new oxo-vanadium complex employing an imidazole-rich tripodal ligand: a bioinspired bromide and hydrocarbon oxidation catalyst.
    Fernández TL; Souza ET; Visentin LC; Santos JV; Mangrich AS; Faria RB; Antunes OA; Scarpellini M
    J Inorg Biochem; 2009 Apr; 103(4):474-9. PubMed ID: 19264361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag.
    Tsai TT; Kao CM
    J Hazard Mater; 2009 Oct; 170(1):466-72. PubMed ID: 19450924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected kinetic complexity in the formation of a nonheme oxoiron(IV) complex.
    Shan X; Que L
    Chem Commun (Camb); 2008 May; (19):2209-11. PubMed ID: 18463742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient, regioselective, and stereospecific oxidation of aliphatic C-H groups with H2O2, catalyzed by aminopyridine manganese complexes.
    Ottenbacher RV; Samsonenko DG; Talsi EP; Bryliakov KP
    Org Lett; 2012 Sep; 14(17):4310-3. PubMed ID: 22747086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new efficient iron catalyst for olefin epoxidation with hydrogen peroxide.
    Mikhalyova EA; Makhlynets OV; Palluccio TD; Filatov AS; Rybak-Akimova EV
    Chem Commun (Camb); 2012 Jan; 48(5):687-9. PubMed ID: 22134336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of 1,2-diamino-1,2-dideoxy-myo- inositol-derived ligands for the investigation of metal complex reactivity.
    Azev VN; D'Alarcao M
    J Org Chem; 2004 Jul; 69(14):4839-42. PubMed ID: 15230612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient [bis(imino)pyridine-iron]-catalyzed oxidation of alkanes.
    Tang J; Gamez P; Reedijk J
    Dalton Trans; 2007 Nov; (41):4644-6. PubMed ID: 17940643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-valent nonheme iron-oxo species in biomimetic oxidations.
    Shan X; Que L
    J Inorg Biochem; 2006 Apr; 100(4):421-33. PubMed ID: 16530841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olefin-dependent discrimination between two nonheme HO-FeV=O tautomeric species in catalytic H2O2 epoxidations.
    Company A; Feng Y; Güell M; Ribas X; Luis JM; Que L; Costas M
    Chemistry; 2009; 15(14):3359-62. PubMed ID: 19229926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.