BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19746797)

  • 1. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.
    Saito M
    Med Phys; 2009 Aug; 36(8):3631-42. PubMed ID: 19746797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical note: optimization for improved tube-loading efficiency in the dual-energy computed tomography coupled with balanced filter method.
    Saito M
    Med Phys; 2010 Aug; 37(8):4182-5. PubMed ID: 20879578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements.
    Saito M
    Med Phys; 2011 Jun; 38(6):2850-8. PubMed ID: 21815360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical Note: Relative proton stopping power estimation from virtual monoenergetic images reconstructed from dual-layer computed tomography.
    Landry G; Dörringer F; Si-Mohamed S; Douek P; Abascal JFPJ; Peyrin F; Almeida IP; Verhaegen F; Rinaldi I; Parodi K; Rit S
    Med Phys; 2019 Apr; 46(4):1821-1828. PubMed ID: 30695108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship.
    Saito M
    Med Phys; 2012 Apr; 39(4):2021-30. PubMed ID: 22482623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Energy Computed Tomography for the Characterization of Intracranial Hemorrhage and Calcification: A Systematic Approach in a Phantom System.
    Nute JL; Jacobsen MC; Chandler A; Cody DD; Schellingerhout D
    Invest Radiol; 2017 Jan; 52(1):30-41. PubMed ID: 27379697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: an anthropomorphic phantom study of radiotherapy treatment planning.
    Tsukihara M; Noto Y; Sasamoto R; Hayakawa T; Saito M
    Med Phys; 2015 Mar; 42(3):1378-88. PubMed ID: 25735292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric comparison of stopping power calibration with dual-energy CT and single-energy CT in proton therapy treatment planning.
    Zhu J; Penfold SN
    Med Phys; 2016 Jun; 43(6):2845-2854. PubMed ID: 27277033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment.
    Almeida IP; Schyns LEJR; Vaniqui A; van der Heyden B; Dedes G; Resch AF; Kamp F; Zindler JD; Parodi K; Landry G; Verhaegen F
    Phys Med Biol; 2018 May; 63(11):115008. PubMed ID: 29616662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron density and effective atomic number estimation in a maximum a posteriori framework for dual-energy computed tomography.
    Simard M; Bär E; Blais D; Bouchard H
    Med Phys; 2020 Sep; 47(9):4137-4149. PubMed ID: 32491193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical density estimations of single- and dual-energy CT using material-based forward projection algorithm: a simulation study.
    Li KW; Fujiwara D; Haga A; Liu H; Geng LS
    Br J Radiol; 2021 Dec; 94(1128):20201236. PubMed ID: 34541866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.
    Atak H; Shikhaliev PM
    Med Phys; 2016 Mar; 43(3):1385-400. PubMed ID: 26936723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stoichiometric calibration method for dual energy computed tomography.
    Bourque AE; Carrier JF; Bouchard H
    Phys Med Biol; 2014 Apr; 59(8):2059-88. PubMed ID: 24694786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging.
    Michalak G; Grimes J; Fletcher J; Halaweish A; Yu L; Leng S; McCollough C
    Med Phys; 2016 Jan; 43(1):513. PubMed ID: 26745944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients.
    Landry G; Seco J; Gaudreault M; Verhaegen F
    Phys Med Biol; 2013 Oct; 58(19):6851-66. PubMed ID: 24025623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical comparison of tissue parameter extraction methods for dual energy computed tomography.
    Tremblay JÉ; Bedwani S; Bouchard H
    Med Phys; 2014 Aug; 41(8):081905. PubMed ID: 25086536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of dual-energy CT with tin filter technology for the discrimination of renal cysts and enhancing masses.
    Leschka S; Stolzmann P; Baumüller S; Scheffel H; Desbiolles L; Schmid B; Marincek B; Alkadhi H
    Acad Radiol; 2010 Apr; 17(4):526-34. PubMed ID: 20207320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.