These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 19746802)

  • 1. Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering.
    Peterson S; Polf J; Ciangaru G; Frank SJ; Bues M; Smith A
    Med Phys; 2009 Aug; 36(8):3693-702. PubMed ID: 19746802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.
    Peterson SW; Polf J; Bues M; Ciangaru G; Archambault L; Beddar S; Smith A
    Phys Med Biol; 2009 May; 54(10):3217-29. PubMed ID: 19420426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy.
    Paganetti H; Jiang H; Parodi K; Slopsema R; Engelsman M
    Phys Med Biol; 2008 Sep; 53(17):4825-53. PubMed ID: 18701772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The M. D. Anderson proton therapy system.
    Smith A; Gillin M; Bues M; Zhu XR; Suzuki K; Mohan R; Woo S; Lee A; Komaki R; Cox J; Hiramoto K; Akiyama H; Ishida T; Sasaki T; Matsuda K
    Med Phys; 2009 Sep; 36(9):4068-83. PubMed ID: 19810479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Harvey MC; Polf JC; Smith AR; Mohan R
    Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An algorithm to assess the need for clinical Monte Carlo dose calculation for small proton therapy fields based on quantification of tissue heterogeneity.
    Bueno M; Paganetti H; Duch MA; Schuemann J
    Med Phys; 2013 Aug; 40(8):081704. PubMed ID: 23927301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine.
    Kugel F; Wulff J; Bäumer C; Janson M; Kretschmer J; Brodbek L; Behrends C; Verbeek N; Looe HK; Poppe B; Timmermann B
    Z Med Phys; 2023 Nov; 33(4):529-541. PubMed ID: 36577626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosimetric uncertainty in prostate cancer proton radiotherapy.
    Lin L; Vargas C; Hsi W; Indelicato D; Slopsema R; Li Z; Yeung D; Horne D; Palta J
    Med Phys; 2008 Nov; 35(11):4800-7. PubMed ID: 19070212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4.
    Grevillot L; Bertrand D; Dessy F; Freud N; Sarrut D
    Phys Med Biol; 2011 Aug; 56(16):5203-19. PubMed ID: 21791731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic estimates of secondary neutron dose in proton therapy.
    Anferov V
    Phys Med Biol; 2010 Dec; 55(24):7509-22. PubMed ID: 21098918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle.
    Sawakuchi GO; Mirkovic D; Perles LA; Sahoo N; Zhu XR; Ciangaru G; Suzuki K; Gillin MT; Mohan R; Titt U
    Med Phys; 2010 Sep; 37(9):4960-70. PubMed ID: 20964215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality assurance method for monitoring of lateral pencil beam positions in scanned carbon-ion radiotherapy using tracking of secondary ions.
    Félix-Bautista R; Ghesquière-Diérickx L; Marek L; Granja C; Soukup P; Turecek D; Kelleter L; Brons S; Ellerbrock M; Jäkel O; Gehrke T; Martišíková M
    Med Phys; 2021 Aug; 48(8):4411-4424. PubMed ID: 34061994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.
    Hecksel D; Anferov V; Fitzek M; Shahnazi K
    Med Phys; 2010 Jun; 37(6):2910-7. PubMed ID: 20632602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical note: Experimental dosimetric characterization of proton pencil beam distortion in a perpendicular magnetic field of an in-beam MR scanner.
    Gebauer B; Pawelke J; Hoffmann A; Lühr A
    Med Phys; 2023 Nov; 50(11):7294-7303. PubMed ID: 37161832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose error analysis for a scanned proton beam delivery system.
    Coutrakon G; Wang N; Miller DW; Yang Y
    Phys Med Biol; 2010 Dec; 55(23):7081-96. PubMed ID: 21076200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive algorithm for spot position corrections after fast energy switching in proton pencil beam scanning.
    Psoroulas S; Bula C; Actis O; Weber DC; Meer D
    Med Phys; 2018 Nov; 45(11):4806-4815. PubMed ID: 30273965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A beam model for focused proton pencil beams.
    Almhagen E; Boersma DJ; Nyström H; Ahnesjö A
    Phys Med; 2018 Aug; 52():27-32. PubMed ID: 30139606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of machine log-files uncertainties on the quality assurance of proton pencil beam scanning treatment delivery.
    Toscano S; Souris K; Gomà C; Barragán-Montero A; Puydupin S; Stappen FV; Janssens G; Matic A; Geets X; Sterpin E
    Phys Med Biol; 2019 Apr; 64(9):095021. PubMed ID: 30897559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.