These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19746929)

  • 61. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells.
    Burschka J; Dualeh A; Kessler F; Baranoff E; Cevey-Ha NL; Yi C; Nazeeruddin MK; Grätzel M
    J Am Chem Soc; 2011 Nov; 133(45):18042-5. PubMed ID: 21972850
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrodeposited ZnO nanowires as photoelectrodes in solid-state organic dye-sensitized solar cells.
    Muguerra H; Berthoux G; Yahya WZ; Kervella Y; Ivanova V; Bouclé J; Demadrille R
    Phys Chem Chem Phys; 2014 Apr; 16(16):7472-80. PubMed ID: 24626609
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Solid-state dye-sensitized solar cells based on poly(3,4-ethylenedioxypyrrole) and metal-free organic dyes.
    Zhang J; Häggman L; Jouini M; Jarboui A; Boschloo G; Vlachopoulos N; Hagfeldt A
    Chemphyschem; 2014 Apr; 15(6):1043-7. PubMed ID: 24596255
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancement of photocurrent in dye sensitized solar cells incorporating a cyclometalated ruthenium complex with cuprous iodide as an electrolyte additive.
    Kisserwan H; Ghaddar TH
    Dalton Trans; 2011 Apr; 40(15):3877-84. PubMed ID: 21308133
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficient organic photovoltaic diodes based on doped pentacene.
    Schon JH; Kloc C; Bucher E; Batlogg B
    Nature; 2000 Jan; 403(6768):408-10. PubMed ID: 10667788
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes.
    Lee WJ; Ramasamy E; Lee DY; Song JS
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1145-9. PubMed ID: 20355903
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A dyadic sensitizer for dye solar cells with high energy-transfer efficiency in the device.
    Siegers C; Hohl-Ebinger J; Zimmermann B; Würfel U; Mülhaupt R; Hinsch A; Haag R
    Chemphyschem; 2007 Jul; 8(10):1548-56. PubMed ID: 17546710
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efficient thiocyanate-free sensitizer: a viable alternative to N719 dye for dye-sensitized solar cells.
    Singh SP; Gupta KS; Sharma GD; Islam A; Han L
    Dalton Trans; 2012 Jul; 41(25):7604-8. PubMed ID: 22595997
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells.
    Wang H; Li H; Xue B; Wang Z; Meng Q; Chen L
    J Am Chem Soc; 2005 May; 127(17):6394-401. PubMed ID: 15853347
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.
    Hardin BE; Sellinger A; Moehl T; Humphry-Baker R; Moser JE; Wang P; Zakeeruddin SM; Grätzel M; McGehee MD
    J Am Chem Soc; 2011 Jul; 133(27):10662-7. PubMed ID: 21619039
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene π-conjugated quaterpyridine for dye-sensitized solar cells.
    Abbotto A; Sauvage F; Barolo C; De Angelis F; Fantacci S; Graetzel M; Manfredi N; Marinzi C; Nazeeruddin MK
    Dalton Trans; 2011 Jan; 40(1):234-42. PubMed ID: 21082119
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanowire dye-sensitized solar cells.
    Law M; Greene LE; Johnson JC; Saykally R; Yang P
    Nat Mater; 2005 Jun; 4(6):455-9. PubMed ID: 15895100
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A novel D-A-π-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells.
    Qu S; Qin C; Islam A; Wu Y; Zhu W; Hua J; Tian H; Han L
    Chem Commun (Camb); 2012 Jul; 48(55):6972-4. PubMed ID: 22673708
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells.
    Klein C; Nazeeruddin MK; Di Censo D; Liska P; Grätzel M
    Inorg Chem; 2004 Jul; 43(14):4216-26. PubMed ID: 15236533
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials.
    Hsu CY; Chen YC; Lin RY; Ho KC; Lin JT
    Phys Chem Chem Phys; 2012 Nov; 14(41):14099-109. PubMed ID: 22735398
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-extinction ruthenium compounds for sunlight harvesting and hole transport.
    Staniszewski A; Heuer WB; Meyer GJ
    Inorg Chem; 2008 Aug; 47(16):7062-4. PubMed ID: 18366155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.