These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
665 related articles for article (PubMed ID: 19746933)
1. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. Bythell BJ; Suhai S; Somogyi A; Paizs B J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933 [TBL] [Abstract][Full Text] [Related]
2. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation. Lioe H; Laskin J; Reid GE; O'Hair RA J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758 [TBL] [Abstract][Full Text] [Related]
3. Sequence-scrambling fragmentation pathways of protonated peptides. Bleiholder C; Osburn S; Williams TD; Suhai S; Van Stipdonk M; Harrison AG; Paizs B J Am Chem Soc; 2008 Dec; 130(52):17774-89. PubMed ID: 19055406 [TBL] [Abstract][Full Text] [Related]
4. Infrared spectroscopy and theoretical studies on gas-phase protonated leu-enkephalin and its fragments: direct experimental evidence for the mobile proton. Polfer NC; Oomens J; Suhai S; Paizs B J Am Chem Soc; 2007 May; 129(18):5887-97. PubMed ID: 17428052 [TBL] [Abstract][Full Text] [Related]
5. Mobile and localized protons: a framework for understanding peptide dissociation. Wysocki VH; Tsaprailis G; Smith LL; Breci LA J Mass Spectrom; 2000 Dec; 35(12):1399-406. PubMed ID: 11180630 [TBL] [Abstract][Full Text] [Related]
6. Do amines react with protonated peptides in the gas phase via transacylation reactions to induce peptide bond cleavage? O'Hair RA; Androutsopoulos NK; Reid GE Rapid Commun Mass Spectrom; 2000; 14(18):1707-16. PubMed ID: 10962495 [TBL] [Abstract][Full Text] [Related]
7. Fragmentation reactions of deprotonated peptides containing proline. The proline effect. Harrison AG; Young AB J Mass Spectrom; 2005 Sep; 40(9):1173-86. PubMed ID: 16041740 [TBL] [Abstract][Full Text] [Related]
8. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes. Shin JW; Lee YH; Hwang S; Lee SW J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996 [TBL] [Abstract][Full Text] [Related]
9. Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides. Laskin J; Yang Z; Song T; Lam C; Chu IK J Am Chem Soc; 2010 Nov; 132(45):16006-16. PubMed ID: 20977217 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions. Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557 [TBL] [Abstract][Full Text] [Related]
11. Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N- and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics. Sabareesh V; Balaram P Rapid Commun Mass Spectrom; 2006; 20(4):618-28. PubMed ID: 16444685 [TBL] [Abstract][Full Text] [Related]
12. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage. Paizs B; Suhai S J Am Soc Mass Spectrom; 2004 Jan; 15(1):103-13. PubMed ID: 14698560 [TBL] [Abstract][Full Text] [Related]
13. Cyclization and rearrangement reactions of a(n) fragment ions of protonated peptides. Bythell BJ; Maître P; Paizs B J Am Chem Soc; 2010 Oct; 132(42):14766-79. PubMed ID: 20925356 [TBL] [Abstract][Full Text] [Related]
14. To b or not to b: the ongoing saga of peptide b ions. Harrison AG Mass Spectrom Rev; 2009; 28(4):640-54. PubMed ID: 19338048 [TBL] [Abstract][Full Text] [Related]
15. Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation. Kapp EA; Schütz F; Reid GE; Eddes JS; Moritz RL; O'Hair RA; Speed TP; Simpson RJ Anal Chem; 2003 Nov; 75(22):6251-64. PubMed ID: 14616009 [TBL] [Abstract][Full Text] [Related]
16. Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine. Bythell BJ; Csonka IP; Suhai S; Barofsky DF; Paizs B J Phys Chem B; 2010 Nov; 114(46):15092-105. PubMed ID: 20973555 [TBL] [Abstract][Full Text] [Related]
17. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions. Lee S; Chung G; Kim J; Oh HB Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809 [TBL] [Abstract][Full Text] [Related]
18. Leaving group effects on the selectivity of the gas-phase fragmentation reactions of side chain fixed-charge-containing peptide ions. Roberts KD; Reid GE J Mass Spectrom; 2007 Feb; 42(2):187-98. PubMed ID: 17154347 [TBL] [Abstract][Full Text] [Related]
19. Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions. Xia Y; Liang X; McLuckey SA Anal Chem; 2006 Feb; 78(4):1218-27. PubMed ID: 16478115 [TBL] [Abstract][Full Text] [Related]
20. Effect of alkyl substitution at the amide nitrogen on amide bond cleavage: electrospray ionization/surface-induced dissociation fragmentation of substance P and two alkylated analogs. Nair H; Somogyi A; Wysocki VH J Mass Spectrom; 1996 Oct; 31(10):1141-8. PubMed ID: 8916423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]