BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19747104)

  • 1. Study of the inhibitory effect of fatty acids on the interaction between DNA and polymerase beta.
    Yang J; Yang J; Yin ZQ; Xu J; Hu N; Svir I; Wang M; Li YY; Zhan L; Wu S; Zheng XL
    Biochemistry (Mosc); 2009 Jul; 74(7):813-8. PubMed ID: 19747104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibitory action of fatty acids on DNA polymerase beta.
    Mizushina Y; Yoshida S; Matsukage A; Sakaguchi K
    Biochim Biophys Acta; 1997 Oct; 1336(3):509-21. PubMed ID: 9367179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study of various binding modes between human DNA polymerase beta and different DNA substrates by surface-plasmon-resonance biosensor.
    Tsoi PY; Yang M
    Biochem J; 2002 Jan; 361(Pt 2):317-25. PubMed ID: 11772403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanisms of rat polymerase beta-ssDNA interactions. Quantitative fluorescence stopped-flow analysis of the formation of the (Pol beta)(16) and (Pol beta)(5) ssDNA binding mode.
    Jezewska MJ; Rajendran S; Galletto R; Bujalowski W
    J Mol Biol; 2001 Nov; 313(5):977-1002. PubMed ID: 11700054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of template-primer and gapped DNA substrates by the human DNA polymerase beta.
    Rajendran S; Jezewska MJ; Bujalowski W
    J Mol Biol; 2001 May; 308(3):477-500. PubMed ID: 11327782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and specificity of Rat DNA polymerase beta interactions with template-primer and gapped DNA substrates.
    Jezewska MJ; Rajendran S; Bujalowski W
    J Biol Chem; 2001 May; 276(19):16123-36. PubMed ID: 11278675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition between different binding modes in rat DNA polymerase beta-ssDNA complexes.
    Jezewska MJ; Rajendran S; Bujalowski W
    J Mol Biol; 1998 Dec; 284(4):1113-31. PubMed ID: 9837730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfoquinovosylmonoacylglycerol inhibitory mode analysis of rat DNA polymerase beta.
    Kasai N; Mizushina Y; Murata H; Yamazaki T; Ohkubo T; Sakaguchi K; Sugawara F
    FEBS J; 2005 Sep; 272(17):4349-61. PubMed ID: 16128805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase beta.
    Murakami S; Kamisuki S; Takata K; Kasai N; Kimura S; Mizushina Y; Ohta K; Sugawara F; Sakaguchi K
    Biochem Biophys Res Commun; 2006 Nov; 350(1):7-16. PubMed ID: 16996474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-step kinetic mechanisms of the ssDNA recognition process by human polymerase beta in its different ssDNA binding modes.
    Rajendran S; Jezewska MJ; Bujalowski W
    Biochemistry; 2001 Oct; 40(39):11794-810. PubMed ID: 11570880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tertiary conformation of the template-primer and gapped DNA substrates in complexes with rat polymerase beta. Fluorescence energy transfer studies using the multiple donor-acceptor approach.
    Jezewska MJ; Galletto R; Bujalowski W
    Biochemistry; 2003 Oct; 42(40):11864-78. PubMed ID: 14529299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human DNA polymerase beta recognizes single-stranded DNA using two different binding modes.
    Rajendran S; Jezewska MJ; Bujalowski W
    J Biol Chem; 1998 Nov; 273(47):31021-31. PubMed ID: 9813000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the binding region of the single-stranded DNA-binding domain of rat DNA polymerase beta using nanosecond-pulse laser-induced cross-linking and mass spectrometry.
    Connor DA; Falick AM; Young MC; Shetlar MD
    Photochem Photobiol; 1998 Sep; 68(3):299-308. PubMed ID: 9747586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural homology between DNA binding sites of DNA polymerase beta and DNA topoisomerase II.
    Mizushina Y; Sugawara F; Iida A; Sakaguchi K
    J Mol Biol; 2000 Dec; 304(3):385-95. PubMed ID: 11090281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structural model analysis of the binding site of an inhibitor, nervonic acid, of both DNA polymerase beta and HIV-1 reverse transcriptase.
    Kasai N; Mizushina Y; Sugawara F; Sakaguchi K
    J Biochem; 2002 Nov; 132(5):819-28. PubMed ID: 12417034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to DNA polymerase IV-mediated polymerase switching on the sliding clamp.
    Le TT; Furukohri A; Tatsumi-Akiyama M; Maki H
    Sci Rep; 2017 Oct; 7(1):12755. PubMed ID: 29038530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA binding properties of the adenovirus DNA replication priming protein pTP.
    de Jong RN; Meijer LA; van der Vliet PC
    Nucleic Acids Res; 2003 Jun; 31(12):3274-86. PubMed ID: 12799455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of the 8-kDa domain of rat DNA polymerase beta with DNA.
    Jezewska MJ; Rajendran S; Bujalowski W
    Biochemistry; 2001 Mar; 40(11):3295-307. PubMed ID: 11258949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase beta: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes.
    Ahn J; Kraynov VS; Zhong X; Werneburg BG; Tsai MD
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):79-87. PubMed ID: 9512464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.