BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19747486)

  • 1. Modeling of the genetic switch of bacteriophage TP901-1: A heteromer of CI and MOR ensures robust bistability.
    Nakanishi H; Pedersen M; Alsing AK; Sneppen K
    J Mol Biol; 2009 Nov; 394(1):15-28. PubMed ID: 19747486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of MOR and the CI operator sites on the genetic switch of the temperate bacteriophage TP901-1.
    Pedersen M; Hammer K
    J Mol Biol; 2008 Dec; 384(3):577-89. PubMed ID: 18930065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of quaternary structure and functional domains of the CI repressor from bacteriophage TP901-1.
    Pedersen M; Lo Leggio L; Grossmann JG; Larsen S; Hammer K
    J Mol Biol; 2008 Feb; 376(4):983-96. PubMed ID: 18191944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key players in the genetic switch of bacteriophage TP901-1.
    Alsing A; Pedersen M; Sneppen K; Hammer K
    Biophys J; 2011 Jan; 100(2):313-21. PubMed ID: 21244827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Octamerization of lambda CI repressor is needed for effective repression of P(RM) and efficient switching from lysogeny.
    Dodd IB; Perkins AJ; Tsemitsidis D; Egan JB
    Genes Dev; 2001 Nov; 15(22):3013-22. PubMed ID: 11711436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of the lysogenic P
    Pedersen M; Neergaard JT; Cassias J; Rasmussen KK; Lo Leggio L; Sneppen K; Hammer K; Kilstrup M
    Sci Rep; 2020 May; 10(1):8659. PubMed ID: 32457340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4.
    Coddeville M; Auvray F; Mikkonen M; Ritzenthaler P
    Virology; 2007 Aug; 364(2):256-68. PubMed ID: 17412387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of operator sites of the CI repressor of phage TP901-1: evolutionary link to other phages.
    Johansen AH; Brøndsted L; Hammer K
    Virology; 2003 Jun; 311(1):144-56. PubMed ID: 12832212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009.
    Kenny JG; Leach S; de la Hoz AB; Venema G; Kok J; Fitzgerald GF; Nauta A; Alonso JC; van Sinderen D
    Virology; 2006 Apr; 347(2):434-46. PubMed ID: 16410016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of bacteriophage mu lysogenic repression.
    Ranquet C; Toussaint A; de Jong H; Maenhaut-Michel G; Geiselmann J
    J Mol Biol; 2005 Oct; 353(1):186-95. PubMed ID: 16154589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of Cro in lambda prophage induction.
    Svenningsen SL; Costantino N; Court DL; Adhya S
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4465-9. PubMed ID: 15728734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the mechanism of repressor inactivation during switching of a temperate bacteriophage.
    Rasmussen KK; Palencia A; Varming AK; El-Wali H; Boeri Erba E; Blackledge M; Hammer K; Herrmann T; Kilstrup M; Lo Leggio L; Jensen MR
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20576-20585. PubMed ID: 32788352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the N-terminal domain of the lactococcal bacteriophage TP901-1 CI repressor to its target DNA: a crystallography, small angle scattering, and nuclear magnetic resonance study.
    Frandsen KH; Rasmussen KK; Jensen MR; Hammer K; Pedersen M; Poulsen JC; Arleth L; Lo Leggio L
    Biochemistry; 2013 Oct; 52(39):6892-904. PubMed ID: 24047404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the CI repressor protein encoded by the temperate lactococcal phage TP901-1.
    Pedersen M; Ligowska M; Hammer K
    J Bacteriol; 2010 Apr; 192(8):2102-10. PubMed ID: 20118255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1.
    Madsen PL; Johansen AH; Hammer K; Brøndsted L
    J Bacteriol; 1999 Dec; 181(24):7430-8. PubMed ID: 10601198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational frameshift sites within bacteriophage lambda genes rexA and cI.
    Hayes S; Bull HJ
    Acta Biochim Pol; 1999; 46(4):879-84. PubMed ID: 10824855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing lysogenic transcription in the temperate coliphage 186.
    Neufing PJ; Shearwin KE; Egan JB
    J Bacteriol; 2001 Apr; 183(7):2376-9. PubMed ID: 11244081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative kinetic analysis of the bacteriophage lambda genetic network.
    Kobiler O; Rokney A; Friedman N; Court DL; Stavans J; Oppenheim AB
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4470-5. PubMed ID: 15728384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of the activator of late transcription, Alt, in the lactococcal bacteriophage TP901-1.
    Pedersen M; Hammer K
    Arch Virol; 2007 Feb; 152(2):305-20. PubMed ID: 17066250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible linker modulates the binding affinity of the TP901-1 CI phage repressor to DNA.
    Varming AK; Rasmussen KK; Zong Z; Thulstrup PW; Kilstrup M; Lo Leggio L
    FEBS J; 2022 Feb; 289(4):1135-1148. PubMed ID: 34665941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.