BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19747527)

  • 1. The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier.
    Hirt B; Penkova ZH; Eckhard A; Liu W; Rask-Andersen H; Müller M; Löwenheim H
    Neuroscience; 2010 Jul; 168(4):957-70. PubMed ID: 19747527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the perilymphatic-endolymphatic water shunt in the cochlea by membrane translocation of aquaporin-5.
    Eckhard A; Dos Santos A; Liu W; Bassiouni M; Arnold H; Gleiser C; Hirt B; Harteneck C; Müller M; Rask-Andersen H; Löwenheim H
    Pflugers Arch; 2015 Dec; 467(12):2571-88. PubMed ID: 26208470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water permeability of the mammalian cochlea: functional features of an aquaporin-facilitated water shunt at the perilymph-endolymph barrier.
    Eckhard A; Müller M; Salt A; Smolders J; Rask-Andersen H; Löwenheim H
    Pflugers Arch; 2014 Oct; 466(10):1963-85. PubMed ID: 24385019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water channel proteins in the inner ear and their link to hearing impairment and deafness.
    Eckhard A; Gleiser C; Arnold H; Rask-Andersen H; Kumagami H; Müller M; Hirt B; Löwenheim H
    Mol Aspects Med; 2012; 33(5-6):612-37. PubMed ID: 22732097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of aquaporin 5 (AQP5) within the cochlea: cDNA cloning and in situ localization.
    Mhatre AN; Steinbach S; Hribar K; Hoque AT; Lalwani AK
    Biochem Biophys Res Commun; 1999 Oct; 264(1):157-62. PubMed ID: 10527857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The dynamic behavior of inner ear fluids].
    Giebel W
    Laryngol Rhinol Otol (Stuttg); 1982 Aug; 61(8):481-8. PubMed ID: 7132510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water permeability of the endolymph-perilymph barrier in the guinea pig cochlea.
    Konishi T; Hamrick PE; Mori H
    Hear Res; 1984 Jul; 15(1):51-8. PubMed ID: 6480523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-localisation of K(ir)4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K(+) recycling routes.
    Eckhard A; Gleiser C; Rask-Andersen H; Arnold H; Liu W; Mack A; Müller M; Löwenheim H; Hirt B
    Cell Tissue Res; 2012 Oct; 350(1):27-43. PubMed ID: 22802001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells.
    Ohinata A; Nagai K; Nomura J; Hashimoto K; Hisatsune A; Miyata T; Isohama Y
    Biochem Biophys Res Commun; 2005 Jan; 326(3):521-6. PubMed ID: 15596131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunolocalization of aquaporin homologs in mouse lacrimal glands.
    Ishida N; Hirai SI; Mita S
    Biochem Biophys Res Commun; 1997 Sep; 238(3):891-5. PubMed ID: 9325187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium gradients in inner ear endolymph.
    Salt AN; Inamura N; Thalmann R; Vora A
    Am J Otolaryngol; 1989; 10(6):371-5. PubMed ID: 2596623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5.
    Moore M; Ma T; Yang B; Verkman AS
    Exp Eye Res; 2000 May; 70(5):557-62. PubMed ID: 10870513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory threshold and inner ear pressure: measurements in experimental endolymphatic hydrops.
    Andrews JC; Böhmer A; Hoffman L; Strelioff D
    Am J Otol; 2000 Sep; 21(5):652-6. PubMed ID: 10993453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of 5-hydroxydopamine and horseradish peroxidase through the perilymph-endolymph barrier.
    Sakagami M; Ikeda K; Juhn SK; Duvall AJ; Matsunaga T
    Ann Otol Rhinol Laryngol; 1991 Oct; 100(10):859-65. PubMed ID: 1952655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular localization of facilitated glucose transporter 1 (GLUT-1) in the cochlear stria vascularis: its possible contribution to the transcellular glucose pathway.
    Ando M; Edamatsu M; Fukuizumi S; Takeuchi S
    Cell Tissue Res; 2008 Mar; 331(3):763-9. PubMed ID: 18196278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeability to potassium of the endolymph-perilymph barrier and its possible relation to hair cell function.
    Konishi T; Salt AN
    Exp Brain Res; 1980; 40(4):457-63. PubMed ID: 7439285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gentamicin concentration gradients in scala tympani perilymph following systemic applications.
    Hahn H; Salt AN; Schumacher U; Plontke SK
    Audiol Neurootol; 2013; 18(6):383-91. PubMed ID: 24192668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops.
    Sziklai I; Ferrary E; Horner KC; Sterkers O; Amiel C
    Laryngoscope; 1992 Apr; 102(4):431-8. PubMed ID: 1556894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K(+)-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells.
    Wangemann P; Shen Z; Liu J
    Hear Res; 1996 Oct; 100(1-2):201-10. PubMed ID: 8922995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Water regulation in the cochlea : Do molecular water channels facilitate potassium-dependent sound transduction?].
    Eckhard A; Löwenheim H
    HNO; 2014 Jun; 62(6):423-31. PubMed ID: 24916350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.