These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 19747826)
1. Bacterial evolution by genomic island transfer occurs via DNA transformation in planta. Lovell HC; Mansfield JW; Godfrey SA; Jackson RW; Hancock JT; Arnold DL Curr Biol; 2009 Sep; 19(18):1586-90. PubMed ID: 19747826 [TBL] [Abstract][Full Text] [Related]
2. Bacterial evolution: dynamic genomes and the power of transformation. Guttman DS Curr Biol; 2009 Sep; 19(18):R857-9. PubMed ID: 19788881 [TBL] [Abstract][Full Text] [Related]
3. In planta conditions induce genomic changes in Pseudomonas syringae pv. phaseolicola. Lovell HC; Jackson RW; Mansfield JW; Godfrey SA; Hancock JT; Desikan R; Arnold DL Mol Plant Pathol; 2011 Feb; 12(2):167-76. PubMed ID: 21199566 [TBL] [Abstract][Full Text] [Related]
4. In planta induced changes in the native plasmid profile of Pseudomonas syringae pathover phaseolicola strain 1302A. Neale HC; Slater RT; Mayne LM; Manoharan B; Arnold DL Plasmid; 2013 Nov; 70(3):420-4. PubMed ID: 23895800 [TBL] [Abstract][Full Text] [Related]
5. Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Pitman AR; Jackson RW; Mansfield JW; Kaitell V; Thwaites R; Arnold DL Curr Biol; 2005 Dec; 15(24):2230-5. PubMed ID: 16360685 [TBL] [Abstract][Full Text] [Related]
6. The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola. Godfrey SA; Lovell HC; Mansfield JW; Corry DS; Jackson RW; Arnold DL PLoS Pathog; 2011 Mar; 7(3):e1002010. PubMed ID: 21483484 [TBL] [Abstract][Full Text] [Related]
7. Confocal imaging of Pseudomonas syringae pv. phaseolicola colony development in bean reveals reduced multiplication of strains containing the genomic island PPHGI-1. Godfrey SA; Mansfield JW; Corry DS; Lovell HC; Jackson RW; Arnold DL Mol Plant Microbe Interact; 2010 Oct; 23(10):1294-302. PubMed ID: 20672876 [TBL] [Abstract][Full Text] [Related]
8. Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance. Neale HC; Jackson RW; Preston GM; Arnold DL Mol Microbiol; 2018 Nov; 110(3):444-454. PubMed ID: 30152900 [TBL] [Abstract][Full Text] [Related]
9. Variation in conservation of the cluster for biosynthesis of the phytotoxin phaseolotoxin in Pseudomonas syringae suggests at least two events of horizontal acquisition. Murillo J; Bardaji L; Navarro de la Fuente L; Führer ME; Aguilera S; Alvarez-Morales A Res Microbiol; 2011 Apr; 162(3):253-61. PubMed ID: 21187143 [TBL] [Abstract][Full Text] [Related]
10. Variable suites of non-effector genes are co-regulated in the type III secretion virulence regulon across the Pseudomonas syringae phylogeny. Mucyn TS; Yourstone S; Lind AL; Biswas S; Nishimura MT; Baltrus DA; Cumbie JS; Chang JH; Jones CD; Dangl JL; Grant SR PLoS Pathog; 2014 Jan; 10(1):e1003807. PubMed ID: 24391493 [TBL] [Abstract][Full Text] [Related]
11. Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis. Ravindran A; Jalan N; Yuan JS; Wang N; Gross DC Microbiologyopen; 2015 Aug; 4(4):553-73. PubMed ID: 25940918 [TBL] [Abstract][Full Text] [Related]
12. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. Patil PB; Sonti RV BMC Microbiol; 2004 Oct; 4():40. PubMed ID: 15473911 [TBL] [Abstract][Full Text] [Related]
13. Pseudomonas syringae pv. phaseolicola effector HopF1 inhibits pathogen-associated molecular pattern-triggered immunity in a RIN4-independent manner in common bean (Phaseolus vulgaris). Hou S; Mu R; Ma G; Xu X; Zhang C; Yang Y; Wu D FEMS Microbiol Lett; 2011 Oct; 323(1):35-43. PubMed ID: 22092678 [TBL] [Abstract][Full Text] [Related]
14. Identification of a novel Pseudomonas syringae Psy61 effector with virulence and avirulence functions by a HrpL-dependent promoter-trap assay. Losada L; Sussan T; Pak K; Zeyad S; Rozenbaum I; Hutcheson SW Mol Plant Microbe Interact; 2004 Mar; 17(3):254-62. PubMed ID: 15000392 [TBL] [Abstract][Full Text] [Related]
15. Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. O'Brien HE; Thakur S; Gong Y; Fung P; Zhang J; Yuan L; Wang PW; Yong C; Scortichini M; Guttman DS BMC Microbiol; 2012 Jul; 12():141. PubMed ID: 22800299 [TBL] [Abstract][Full Text] [Related]
16. Excision from tRNA genes of a large chromosomal region, carrying avrPphB, associated with race change in the bean pathogen, Pseudomonas syringae pv. phaseolicola. Jackson RW; Mansfield JW; Arnold DL; Sesma A; Paynter CD; Murillo J; Taylor JD; Vivian A Mol Microbiol; 2000 Oct; 38(2):186-97. PubMed ID: 11069647 [TBL] [Abstract][Full Text] [Related]
17. Involvement of β-Carbonic Anhydrase Genes in Bacterial Genomic Islands and Their Horizontal Transfer to Protists. Zolfaghari Emameh R; Barker HR; Hytönen VP; Parkkila S Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802189 [TBL] [Abstract][Full Text] [Related]
18. Pseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster. Oguiza JA; Rico A; Rivas LA; Sutra L; Vivian A; Murillo J Microbiology (Reading); 2004 Feb; 150(Pt 2):473-482. PubMed ID: 14766926 [TBL] [Abstract][Full Text] [Related]
19. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. O'Leary BM; Neale HC; Geilfus CM; Jackson RW; Arnold DL; Preston GM Plant Cell Environ; 2016 Oct; 39(10):2172-84. PubMed ID: 27239727 [TBL] [Abstract][Full Text] [Related]
20. Sequence variations in alleles of the avirulence gene avrPphE.R2 from Pseudomonas syringae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence. Stevens C; Bennett MA; Athanassopoulos E; Tsiamis G; Taylor JD; Mansfield JW Mol Microbiol; 1998 Jul; 29(1):165-77. PubMed ID: 9701811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]