BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19747846)

  • 1. Double bond migration to methylidene positions during electron ionization mass spectrometry of branched monounsaturated fatty acid derivatives.
    Rontani JF; Zabeti N; Aubert C
    J Am Soc Mass Spectrom; 2009 Nov; 20(11):1997-2005. PubMed ID: 19747846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Identification of Monounsaturated Branched Chain Fatty Acid Methyl Esters by Combination of Electron Ionization and Covalent Adduct Chemical Ionization Tandem Mass Spectrometry.
    Wang Z; Wang DH; Park HG; Tobias HJ; Kothapalli KSD; Brenna JT
    Anal Chem; 2019 Dec; 91(23):15147-15154. PubMed ID: 31689070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.
    Ran-Ressler RR; Lawrence P; Brenna JT
    J Lipid Res; 2012 Jan; 53(1):195-203. PubMed ID: 22021637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen and trimethylsilyl transfers during EI mass spectral fragmentation of hydroxycarboxylic and oxocarboxylic acid trimethylsilyl derivatives.
    Rontani JF; Aubert C
    J Am Soc Mass Spectrom; 2008 Jan; 19(1):66-75. PubMed ID: 18061477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of double bond positions of unsaturated fatty acids by a chemical ionization mass spectrometry computer system.
    Murata T; Ariga T; Araki E
    J Lipid Res; 1978 Feb; 19(2):172-6. PubMed ID: 632680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picolinyl esters for the structural determination of fatty acids by GC/MS.
    Harvey DJ
    Mol Biotechnol; 1998 Dec; 10(3):251-60. PubMed ID: 9951705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative electrospray ionization low-energy tandem mass spectrometry of hydroxylated fatty acids: a mechanistic study.
    Moe MK; Strøm MB; Jensen E; Claeys M
    Rapid Commun Mass Spectrom; 2004; 18(15):1731-40. PubMed ID: 15282772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: A novel method for analysis of branched-chain fatty acids.
    Zirrolli JA; Murphy RC
    J Am Soc Mass Spectrom; 1993 Mar; 4(3):223-9. PubMed ID: 24234851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of cis- and trans-monounsaturated fatty acids in dairy products and cod liver oil by mass spectrometry in the selected ion monitoring mode.
    Hauff S; Vetter W
    J Agric Food Chem; 2009 May; 57(9):3423-30. PubMed ID: 19323583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.
    Xu PX; Hu AF; Hu D; Gao X; Zhao YF
    Rapid Commun Mass Spectrom; 2008 Oct; 22(19):2977-83. PubMed ID: 18763263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel hydrogen migration of dialkylphosphonic acid esters using electrospray ionization tandem mass spectrometry.
    Zeng Z; Luo P; Jiang Y; Liu Y; Tang G; Xu P; Zhao Y
    Rapid Commun Mass Spectrom; 2011 Nov; 25(21):3314-22. PubMed ID: 22006395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of wax esters by electron ionization mass spectrometry.
    Urbanová K; Vrkoslav V; Valterová I; Háková M; Cvacka J
    J Lipid Res; 2012 Jan; 53(1):204-13. PubMed ID: 22058425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospray mass spectrometry of human hair wax esters.
    Fitzgerald M; Murphy RC
    J Lipid Res; 2007 May; 48(5):1231-46. PubMed ID: 17277382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of electron ionization mass spectral (EIMS) fragmentation patterns of chloropropanol esters of palmitic acid using isotope labeling technique.
    Rahn AK; Yaylayan VA
    J Oleo Sci; 2014; 63(10):1045-55. PubMed ID: 25213450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and Semiquantitative Analysis of Novel Ultratrace C
    Wang DH; Wang Z; Chen R; Brenna JT
    J Agric Food Chem; 2020 Jul; 68(28):7482-7489. PubMed ID: 32608227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument.
    Hsu FF; Turk J
    J Am Soc Mass Spectrom; 1999 Jul; 10(7):600-12. PubMed ID: 10384724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron ionization mass spectral fragmentation of C19 isoprenoid aldehydes and carboxylic acid methyl and trimethylsilyl esters.
    Rontani JF; Aubert C
    Rapid Commun Mass Spectrom; 2003; 17(9):949-56. PubMed ID: 12717768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron ionization mass spectral fragmentation of derivatized 4,5- and 5,6-epoxysterols.
    Rontani JF; Aubert C
    Rapid Commun Mass Spectrom; 2004; 18(9):955-9. PubMed ID: 15116422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic investigation of H atom transfer in a gas-phase dissociation reaction: McLafferty rearrangement of model gas-phase peptide ions.
    Van Stipdonk MJ; Kerstetter DR; Leavitt CM; Groenewold GS; Steill J; Oomens J
    Phys Chem Chem Phys; 2008 Jun; 10(22):3209-21. PubMed ID: 18500397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.
    Chen J; Green KB; Nichols KK
    Lipids; 2015 Aug; 50(8):821-36. PubMed ID: 26178197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.