BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19748127)

  • 1. Directly observed hydrogen bonds at calcium-binding-sites of calmodulin in solution relate to affinity of the calcium-binding.
    Juranić N; Atanasova E; Macura S; Prendergast FG
    J Inorg Biochem; 2009 Oct; 103(10):1415-8. PubMed ID: 19748127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains.
    Chou JJ; Li S; Klee CB; Bax A
    Nat Struct Biol; 2001 Nov; 8(11):990-7. PubMed ID: 11685248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structures of the microglia/macrophage-specific protein Iba1 from human and mouse demonstrate novel molecular conformation change induced by calcium binding.
    Yamada M; Ohsawa K; Imai Y; Kohsaka S; Kamitori S
    J Mol Biol; 2006 Dec; 364(3):449-57. PubMed ID: 17011575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal-structure and biochemical characterization of recombinant human calcyphosine delineates a novel EF-hand-containing protein family.
    Dong H; Li X; Lou Z; Xu X; Su D; Zhou X; Zhou W; Bartlam M; Rao Z
    J Mol Biol; 2008 Nov; 383(3):455-64. PubMed ID: 18775726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An examination of glutamic acid in the -X chelating position of the helix-loop-helix calcium binding motif.
    Procyshyn RM; Reid RE
    Arch Biochem Biophys; 1994 Jun; 311(2):425-9. PubMed ID: 7911293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a high-affinity variant of rat alpha-parvalbumin.
    Lee YH; Tanner JJ; Larson JD; Henzl MT
    Biochemistry; 2004 Aug; 43(31):10008-17. PubMed ID: 15287728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate solution structures of proteins from X-ray data and a minimal set of NMR data: calmodulin-peptide complexes as examples.
    Bertini I; Kursula P; Luchinat C; Parigi G; Vahokoski J; Wilmanns M; Yuan J
    J Am Chem Soc; 2009 Apr; 131(14):5134-44. PubMed ID: 19317469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential influence of Asp in the Ca2+ coordination position 5 of parvalbumin on the calcium-binding affinity: a computational study.
    Zhao J; Nelson DJ; Huo S
    J Inorg Biochem; 2006 Nov; 100(11):1879-87. PubMed ID: 16965819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helix A stabilization precedes amino-terminal lobe activation upon calcium binding to calmodulin.
    Chen B; Lowry DF; Mayer MU; Squier TC
    Biochemistry; 2008 Sep; 47(35):9220-6. PubMed ID: 18690719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, dynamics and thermodynamics of the human centrin 2/hSfi1 complex.
    Martinez-Sanz J; Kateb F; Assairi L; Blouquit Y; Bodenhausen G; Abergel D; Mouawad L; Craescu CT
    J Mol Biol; 2010 Jan; 395(1):191-204. PubMed ID: 19857500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode.
    Maximciuc AA; Putkey JA; Shamoo Y; Mackenzie KR
    Structure; 2006 Oct; 14(10):1547-56. PubMed ID: 17027503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin.
    Settimo L; Donnini S; Juffer AH; Woody RW; Marin O
    Biopolymers; 2007; 88(3):373-85. PubMed ID: 17173306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and structural transitions in the EF-hands of calmodulin.
    Moorthy AK; Murthy MR
    J Biomol Struct Dyn; 2001 Aug; 19(1):47-57. PubMed ID: 11565851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open and shut case.
    Akke M; Chazin WJ
    Nat Struct Biol; 2001 Nov; 8(11):910-2. PubMed ID: 11685229
    [No Abstract]   [Full Text] [Related]  

  • 16. Ca(2+) dissociation from the C-terminal EF-hand pair in calmodulin: a steered molecular dynamics study.
    Zhang Y; Tan H; Lu Y; Jia Z; Chen G
    FEBS Lett; 2008 Apr; 582(9):1355-61. PubMed ID: 18353249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational design of calmodulin mutants with up to 900-fold increase in binding specificity.
    Yosef E; Politi R; Choi MH; Shifman JM
    J Mol Biol; 2009 Feb; 385(5):1470-80. PubMed ID: 18845160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ binding sites in calmodulin and troponin C alter interhelical angle movements.
    Goto K; Toyama A; Takeuchi H; Takayama K; Saito T; Iwamoto M; Yeh JZ; Narahashi T
    FEBS Lett; 2004 Mar; 561(1-3):51-7. PubMed ID: 15013750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of calcium-activated calmodulin in solution.
    Yang C; Jas GS; Kuczera K
    J Biomol Struct Dyn; 2001 Oct; 19(2):247-71. PubMed ID: 11697730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering strontium binding affinity in an EF-hand motif: a quantum chemical and molecular dynamics study.
    Rinaldo D; Vita C; Field MJ
    J Biomol Struct Dyn; 2004 Dec; 22(3):281-97. PubMed ID: 15473703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.