These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 19748136)
1. Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction. Wang MJ; Wang WX Aquat Toxicol; 2009 Nov; 95(2):99-107. PubMed ID: 19748136 [TBL] [Abstract][Full Text] [Related]
2. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: exposure to cadmium. Wang MJ; Wang WX Aquat Toxicol; 2011 Jan; 101(2):377-86. PubMed ID: 21216348 [TBL] [Abstract][Full Text] [Related]
3. Cadmium toxicity to two marine phytoplankton under different nutrient conditions. Miao AJ; Wang WX Aquat Toxicol; 2006 Jun; 78(2):114-26. PubMed ID: 16616380 [TBL] [Abstract][Full Text] [Related]
4. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton. Wu Y; Wang WX Environ Pollut; 2011 Oct; 159(10):3097-105. PubMed ID: 21550705 [TBL] [Abstract][Full Text] [Related]
5. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Lavoie M; Le Faucheur S; Fortin C; Campbell PG Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040 [TBL] [Abstract][Full Text] [Related]
6. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure. Wang MJ; Wang WX Aquat Toxicol; 2011 Jan; 101(2):387-95. PubMed ID: 21216349 [TBL] [Abstract][Full Text] [Related]
7. The response and detoxification strategies of three freshwater phytoplankton species, Aphanizomenon flos-aquae, Pediastrum simplex, and Synedra acus, to cadmium. Ran X; Yue H; Fu X; Kang Y; Xu S; Yang Y; Xu J; Shi J; Wu Z Environ Sci Pollut Res Int; 2015 Dec; 22(24):19596-606. PubMed ID: 26272291 [TBL] [Abstract][Full Text] [Related]
8. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton. Wu Y; Wang WX Aquat Toxicol; 2014 Mar; 148():122-9. PubMed ID: 24473163 [TBL] [Abstract][Full Text] [Related]
9. Predicting cadmium toxicity with the kinetics of phytochelatin induction in a marine diatom. Wu Y; Yuan Y; Yuan H; Zhang W; Zhang L Aquat Toxicol; 2019 Feb; 207():101-109. PubMed ID: 30557755 [TBL] [Abstract][Full Text] [Related]
10. Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcelluar distribution and thiol synthesis. Wang MJ; Wang WX Environ Sci Technol; 2008 Nov; 42(22):8603-8. PubMed ID: 19068855 [TBL] [Abstract][Full Text] [Related]
11. Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. Wu Y; Wang WX J Hazard Mater; 2012 May; 217-218():271-8. PubMed ID: 22476094 [TBL] [Abstract][Full Text] [Related]
12. Cadmium accumulation and Cd-binding proteins in marine invertebrates--a radiotracer study. Erk M; Ruus A; Ingebrigtsen K; Hylland K Chemosphere; 2005 Dec; 61(11):1651-64. PubMed ID: 15946726 [TBL] [Abstract][Full Text] [Related]
14. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure. Morelli E; Ferrara R; Bellini B; Dini F; Di Giuseppe G; Fantozzi L Sci Total Environ; 2009 Dec; 408(2):286-93. PubMed ID: 19846208 [TBL] [Abstract][Full Text] [Related]
15. Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater. Li SX; Zheng FY; Hong HS; Deng NS; Lin LX Mar Environ Res; 2009; 67(4-5):199-206. PubMed ID: 19307016 [TBL] [Abstract][Full Text] [Related]
16. Cadmium in marine phytoplankton. Xu Y; Morel FM Met Ions Life Sci; 2013; 11():509-28. PubMed ID: 23430783 [TBL] [Abstract][Full Text] [Related]
17. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Levy JL; Angel BM; Stauber JL; Poon WL; Simpson SL; Cheng SH; Jolley DF Aquat Toxicol; 2008 Aug; 89(2):82-93. PubMed ID: 18639348 [TBL] [Abstract][Full Text] [Related]
18. The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure. Pan K; Wang WX Aquat Toxicol; 2008 Dec; 90(4):253-60. PubMed ID: 18992948 [TBL] [Abstract][Full Text] [Related]
19. Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Wang C; Sun Q; Wang L Environ Toxicol; 2009 Jun; 24(3):271-8. PubMed ID: 18655189 [TBL] [Abstract][Full Text] [Related]
20. A phytochelatin-based bioassay in marine diatoms useful for the assessment of bioavailability of heavy metals released by polluted sediments. Morelli E; Marangi ML; Fantozzi L Environ Int; 2009 Apr; 35(3):532-8. PubMed ID: 18973945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]