BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19748349)

  • 1. The alternating power stroke of a 6-cylinder AAA protease chaperone engine.
    Kress W; Weber-Ban E
    Mol Cell; 2009 Sep; 35(5):545-7. PubMed ID: 19748349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases.
    Augustin S; Gerdes F; Lee S; Tsai FT; Langer T; Tatsuta T
    Mol Cell; 2009 Sep; 35(5):574-85. PubMed ID: 19748354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria.
    Arlt H; Tauer R; Feldmann H; Neupert W; Langer T
    Cell; 1996 Jun; 85(6):875-85. PubMed ID: 8681382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space.
    Graef M; Seewald G; Langer T
    Mol Cell Biol; 2007 Apr; 27(7):2476-85. PubMed ID: 17261594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights into the
    Lee S; Lee H; Yoo S; Kim H
    J Biol Chem; 2017 Dec; 292(49):20058-20066. PubMed ID: 29030426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP-1 and IAP-1, two novel AAA proteases with catalytic sites on opposite membrane surfaces in mitochondrial inner membrane of Neurospora crassa.
    Klanner C; Prokisch H; Langer T
    Mol Biol Cell; 2001 Sep; 12(9):2858-69. PubMed ID: 11553723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of two ATP-binding sites for oligomerization, ATPase activity and chaperone function of mitochondrial Hsp78 protein.
    Krzewska J; Konopa G; Liberek K
    J Mol Biol; 2001 Dec; 314(4):901-10. PubMed ID: 11734006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface.
    Leonhard K; Guiard B; Pellecchia G; Tzagoloff A; Neupert W; Langer T
    Mol Cell; 2000 Apr; 5(4):629-38. PubMed ID: 10882099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae.
    Van Dyck L; Langer T
    Cell Mol Life Sci; 1999 Nov; 56(9-10):825-42. PubMed ID: 11212342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement.
    Graef M; Langer T
    J Struct Biol; 2006 Oct; 156(1):101-8. PubMed ID: 16527490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria.
    Leonhard K; Herrmann JM; Stuart RA; Mannhaupt G; Neupert W; Langer T
    EMBO J; 1996 Aug; 15(16):4218-29. PubMed ID: 8861950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing.
    Puchades C; Rampello AJ; Shin M; Giuliano CJ; Wiseman RL; Glynn SE; Lander GC
    Science; 2017 Nov; 358(6363):. PubMed ID: 29097521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer.
    Hishida T; Han YW; Fujimoto S; Iwasaki H; Shinagawa H
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9573-7. PubMed ID: 15210950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone.
    Irzik K; Pfrötzschner J; Goss T; Ahnert F; Haupt M; Greie JC
    FEBS J; 2011 Sep; 278(17):3041-53. PubMed ID: 21711450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.
    Yamasaki T; Nakazaki Y; Yoshida M; Watanabe YH
    FEBS J; 2011 Jul; 278(13):2395-403. PubMed ID: 21554542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.
    Lee S; Augustin S; Tatsuta T; Gerdes F; Langer T; Tsai FT
    J Biol Chem; 2011 Feb; 286(6):4404-11. PubMed ID: 21147776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding.
    Hattendorf DA; Lindquist SL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2732-7. PubMed ID: 11867765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.