These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1974841)

  • 41. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction.
    Mancilla A; Mayor R
    Dev Biol; 1996 Aug; 177(2):580-9. PubMed ID: 8806833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Xenopus ADAM19 is involved in neural, neural crest and muscle development.
    Neuner R; Cousin H; McCusker C; Coyne M; Alfandari D
    Mech Dev; 2009; 126(3-4):240-55. PubMed ID: 19027850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm.
    Godsave S; Dekker EJ; Holling T; Pannese M; Boncinelli E; Durston A
    Dev Biol; 1994 Dec; 166(2):465-76. PubMed ID: 7813770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early anteroposterior division of the presumptive neurectoderm in Xenopus.
    Gamse JT; Sive H
    Mech Dev; 2001 Jun; 104(1-2):21-36. PubMed ID: 11404077
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FGF is required for posterior neural patterning but not for neural induction.
    Holowacz T; Sokol S
    Dev Biol; 1999 Jan; 205(2):296-308. PubMed ID: 9917365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo.
    Erter CE; Wilm TP; Basler N; Wright CV; Solnica-Krezel L
    Development; 2001 Sep; 128(18):3571-83. PubMed ID: 11566861
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus.
    Matsukawa S; Miwata K; Asashima M; Michiue T
    Dev Biol; 2015 Mar; 399(1):164-176. PubMed ID: 25576027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos.
    Ruiz i Altaba A; Jessell TM
    Development; 1991 Aug; 112(4):945-58. PubMed ID: 1682132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intracellular acidification of gastrula ectoderm is important for posterior axial development in Xenopus.
    Gutknecht DR; Koster CH; Tertoolen LG; de Laat SW; Durston AJ
    Development; 1995 Jun; 121(6):1911-25. PubMed ID: 7601004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm.
    Bang AG; Papalopulu N; Kintner C; Goulding MD
    Development; 1997 May; 124(10):2075-85. PubMed ID: 9169853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distinct roles for Distal-less genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus.
    Luo T; Matsuo-Takasaki M; Sargent TD
    Mol Reprod Dev; 2001 Nov; 60(3):331-7. PubMed ID: 11599044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Posterior expression of a homeobox gene in early Xenopus embryos.
    Condie BG; Harland RM
    Development; 1987 Sep; 101(1):93-105. PubMed ID: 2452727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for non-axial A/P patterning in the nonneural ectoderm of Xenopus and zebrafish pregastrula embryos.
    Read EM; Rodaway AR; Neave B; Brandon N; Holder N; Patient RK; Walmsley ME
    Int J Dev Biol; 1998 Sep; 42(6):763-74. PubMed ID: 9727832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos.
    Ault KT; Xu RH; Kung HF; Jamrich M
    Dev Biol; 1997 Dec; 192(1):162-71. PubMed ID: 9405105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates.
    Plouhinec JL; Medina-Ruiz S; Borday C; Bernard E; Vert JP; Eisen MB; Harland RM; Monsoro-Burq AH
    PLoS Biol; 2017 Oct; 15(10):e2004045. PubMed ID: 29049289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Horizontal and vertical pathways in neural induction.
    Guthrie S
    Trends Neurosci; 1991 Apr; 14(4):123-6. PubMed ID: 1710845
    [No Abstract]   [Full Text] [Related]  

  • 58. Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development.
    Takahashi N; Tochimoto N; Ohmori SY; Mamada H; Itoh M; Inamori M; Shinga J; Osada S; Taira M
    Int J Dev Biol; 2005; 49(8):939-51. PubMed ID: 16281171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction.
    Tannahill D; Isaacs HV; Close MJ; Peters G; Slack JM
    Development; 1992 Jul; 115(3):695-702. PubMed ID: 1425349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.