BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 19748629)

  • 1. Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities.
    Sparaco M; Gaeta LM; Santorelli FM; Passarelli C; Tozzi G; Bertini E; Simonati A; Scaravilli F; Taroni F; Duyckaerts C; Feleppa M; Piemonte F
    J Neurol Sci; 2009 Dec; 287(1-2):111-8. PubMed ID: 19748629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Friedreich's ataxia: past, present and future.
    Marmolino D
    Brain Res Rev; 2011 Jun; 67(1-2):311-30. PubMed ID: 21550666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia.
    Rötig A; de Lonlay P; Chretien D; Foury F; Koenig M; Sidi D; Munnich A; Rustin P
    Nat Genet; 1997 Oct; 17(2):215-7. PubMed ID: 9326946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.
    Auchère F; Santos R; Planamente S; Lesuisse E; Camadro JM
    Hum Mol Genet; 2008 Sep; 17(18):2790-802. PubMed ID: 18562474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friedreich ataxia: the oxidative stress paradox.
    Seznec H; Simon D; Bouton C; Reutenauer L; Hertzog A; Golik P; Procaccio V; Patel M; Drapier JC; Koenig M; Puccio H
    Hum Mol Genet; 2005 Feb; 14(4):463-74. PubMed ID: 15615771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in mitochondrial glutathione levels and protein thiol oxidation in ∆yfh1 yeast cells and the lymphoblasts of patients with Friedreich's ataxia.
    Bulteau AL; Planamente S; Jornea L; Dur A; Lesuisse E; Camadro JM; Auchère F
    Biochim Biophys Acta; 2012 Feb; 1822(2):212-25. PubMed ID: 22200491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'.
    Abeti R; Parkinson MH; Hargreaves IP; Angelova PR; Sandi C; Pook MA; Giunti P; Abramov AY
    Cell Death Dis; 2016 May; 7(5):e2237. PubMed ID: 27228352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does oxidative stress contribute to the pathology of Friedreich's ataxia? A radical question.
    Armstrong JS; Khdour O; Hecht SM
    FASEB J; 2010 Jul; 24(7):2152-63. PubMed ID: 20219987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dorsal root ganglion in Friedreich's ataxia.
    Koeppen AH; Morral JA; Davis AN; Qian J; Petrocine SV; Knutson MD; Gibson WM; Cusack MJ; Li D
    Acta Neuropathol; 2009 Dec; 118(6):763-76. PubMed ID: 19727777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of protein glutathionylation on neuronal cytoskeleton: a potential link to neurodegeneration.
    Carletti B; Passarelli C; Sparaco M; Tozzi G; Pastore A; Bertini E; Piemonte F
    Neuroscience; 2011 Sep; 192():285-94. PubMed ID: 21704675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia.
    Lane DJ; Huang ML; Ting S; Sivagurunathan S; Richardson DR
    Biochem J; 2013 Aug; 453(3):321-36. PubMed ID: 23849057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron dysregulation in Friedreich ataxia.
    Wilson RB
    Semin Pediatr Neurol; 2006 Sep; 13(3):166-75. PubMed ID: 17101455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones.
    Shan Y; Napoli E; Cortopassi G
    Hum Mol Genet; 2007 Apr; 16(8):929-41. PubMed ID: 17331979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia: a potential role in the pathogenesis of the disease.
    Pastore A; Tozzi G; Gaeta LM; Bertini E; Serafini V; Di Cesare S; Bonetto V; Casoni F; Carrozzo R; Federici G; Piemonte F
    J Biol Chem; 2003 Oct; 278(43):42588-95. PubMed ID: 12915401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins.
    Koeppen AH; Michael SC; Knutson MD; Haile DJ; Qian J; Levi S; Santambrogio P; Garrick MD; Lamarche JB
    Acta Neuropathol; 2007 Aug; 114(2):163-73. PubMed ID: 17443334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathology and pathogenesis of sensory neuropathy in Friedreich's ataxia.
    Morral JA; Davis AN; Qian J; Gelman BB; Koeppen AH
    Acta Neuropathol; 2010 Jul; 120(1):97-108. PubMed ID: 20339857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiomyopathy in Friedreich's ataxia.
    Rahman F; Pandolfo M
    Acta Neurol Belg; 2011 Sep; 111(3):183-7. PubMed ID: 22141280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frataxin silencing alters microtubule stability in motor neurons: implications for Friedreich's ataxia.
    Piermarini E; Cartelli D; Pastore A; Tozzi G; Compagnucci C; Giorda E; D'Amico J; Petrini S; Bertini E; Cappelletti G; Piemonte F
    Hum Mol Genet; 2016 Oct; 25(19):4288-4301. PubMed ID: 27516386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipophilic methylene blue analogues enhance mitochondrial function and increase frataxin levels in a cellular model of Friedreich's ataxia.
    Khdour OM; Bandyopadhyay I; Chowdhury SR; Visavadiya NP; Hecht SM
    Bioorg Med Chem; 2018 Jul; 26(12):3359-3369. PubMed ID: 29773347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.