BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19748931)

  • 1. Adaptive evolution of digestive RNASE1 genes in leaf-eating monkeys revisited: new insights from ten additional colobines.
    Yu L; Wang XY; Jin W; Luan PT; Ting N; Zhang YP
    Mol Biol Evol; 2010 Jan; 27(1):121-31. PubMed ID: 19748931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys.
    Schienman JE; Holt RA; Auerbach MR; Stewart CB
    Mol Biol Evol; 2006 Aug; 23(8):1465-79. PubMed ID: 16751256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplication and parallel evolution of the pancreatic ribonuclease gene (RNASE1) in folivorous non-colobine primates, the howler monkeys (Alouatta spp.).
    Janiak MC; Burrell AS; Orkin JD; Disotell TR
    Sci Rep; 2019 Dec; 9(1):20366. PubMed ID: 31889139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple bursts of pancreatic ribonuclease gene duplication in insect-eating bats.
    Xu H; Liu Y; Meng F; He B; Han N; Li G; Rossiter SJ; Zhang S
    Gene; 2013 Sep; 526(2):112-7. PubMed ID: 23644026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey.
    Zhang J; Zhang YP; Rosenberg HF
    Nat Genet; 2002 Apr; 30(4):411-5. PubMed ID: 11925567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions.
    Zhang J
    Mol Biol Evol; 2003 Aug; 20(8):1310-7. PubMed ID: 12777504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic relationships among the colobine monkeys revisited: new insights from analyses of complete mt genomes and 44 nuclear non-coding markers.
    Wang XP; Yu L; Roos C; Ting N; Chen CP; Wang J; Zhang YP
    PLoS One; 2012; 7(4):e36274. PubMed ID: 22558416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial data support an odd-nosed colobine clade.
    Sterner KN; Raaum RL; Zhang YP; Stewart CB; Disotell TR
    Mol Phylogenet Evol; 2006 Jul; 40(1):1-7. PubMed ID: 16500120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unusual adaptive expansion of pancreatic ribonuclease gene in carnivora.
    Yu L; Zhang YP
    Mol Biol Evol; 2006 Dec; 23(12):2326-35. PubMed ID: 16950759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys.
    Zhang J
    Nat Genet; 2006 Jul; 38(7):819-23. PubMed ID: 16767103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary and functional novelty of pancreatic ribonuclease: a study of Musteloidea (order Carnivora).
    Liu J; Wang XP; Cho S; Lim BK; Irwin DM; Ryder OA; Zhang YP; Yu L
    Sci Rep; 2014 May; 4():5070. PubMed ID: 24861105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudogenization of the tumor-growth promoter angiogenin in a leaf-eating monkey.
    Zhang J; Zhang YP
    Gene; 2003 Apr; 308():95-101. PubMed ID: 12711394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of Digestive Enzymes and RNASE1 Provides Insights into Dietary Switch of Cetaceans.
    Wang Z; Xu S; Du K; Huang F; Chen Z; Zhou K; Ren W; Yang G
    Mol Biol Evol; 2016 Dec; 33(12):3144-3157. PubMed ID: 27651393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species.
    Hale VL; Tan CL; Niu K; Yang Y; Knight R; Zhang Q; Cui D; Amato KR
    Microb Ecol; 2018 Feb; 75(2):515-527. PubMed ID: 28735426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic evidence for parallel adaptive origins of digestive RNases in Asian and African leaf monkeys: a response to Xu et al. (2009).
    Zhang J
    Mol Phylogenet Evol; 2009 Nov; 53(2):608-9; author reply 610-1. PubMed ID: 19595778
    [No Abstract]   [Full Text] [Related]  

  • 16. Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys.
    Roos C; Zinner D; Kubatko LS; Schwarz C; Yang M; Meyer D; Nash SD; Xing J; Batzer MA; Brameier M; Leendertz FH; Ziegler T; Perwitasari-Farajallah D; Nadler T; Walter L; Osterholz M
    BMC Evol Biol; 2011 Mar; 11():77. PubMed ID: 21435245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the bitter taste receptor TAS2R38 in colobines.
    Purba LHPS; Widayati KA; Suzuki-Hashido N; Itoigawa A; Hayakawa T; Nila S; Juliandi B; Suryobroto B; Imai H
    Primates; 2020 May; 61(3):485-494. PubMed ID: 32006126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic incongruence between nuclear and mitochondrial markers in the Asian colobines and the evolution of the langurs and leaf monkeys.
    Ting N; Tosi AJ; Li Y; Zhang YP; Disotell TR
    Mol Phylogenet Evol; 2008 Feb; 46(2):466-74. PubMed ID: 18180172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history.
    Zhou X; Wang B; Pan Q; Zhang J; Kumar S; Sun X; Liu Z; Pan H; Lin Y; Liu G; Zhan W; Li M; Ren B; Ma X; Ruan H; Cheng C; Wang D; Shi F; Hui Y; Tao Y; Zhang C; Zhu P; Xiang Z; Jiang W; Chang J; Wang H; Cao Z; Jiang Z; Li B; Yang G; Roos C; Garber PA; Bruford MW; Li R; Li M
    Nat Genet; 2014 Dec; 46(12):1303-10. PubMed ID: 25362486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome painting shows that the proboscis monkey (Nasalis larvatus) has a derived karyotype and is phylogenetically nested within Asian Colobines.
    Bigoni F; Stanyon R; Wimmer R; Schempp W
    Am J Primatol; 2003 Jul; 60(3):85-93. PubMed ID: 12874840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.