These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19748935)

  • 1. Vinegar production residue as substrates for phytase production by Aspergillus ficuum.
    Wang Z; Dong X; Tong J; Wu Y; Zhang Q
    Waste Manag Res; 2010 Feb; 28(2):165-8. PubMed ID: 19748935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waste vinegar residue as substrate for phytase production.
    Wang ZH; Dong XF; Zhang GQ; Tong JM; Zhang Q; Xu SZ
    Waste Manag Res; 2011 Dec; 29(12):1262-70. PubMed ID: 21447611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of phytase production from potato waste using Aspergillus ficuum.
    Tian M; Yuan Q
    3 Biotech; 2016 Dec; 6(2):256. PubMed ID: 28330328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology.
    Krishna C; Nokes SE
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):161-70. PubMed ID: 11420657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial production of extra-cellular phytase using polystyrene as inert solid support.
    Gautam P; Sabu A; Pandey A; Szakacs G; Soccol CR
    Bioresour Technol; 2002 Jul; 83(3):229-33. PubMed ID: 12094799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected].
    Sapna ; Singh B
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effect of protracted sterilization of lentils on phytase production by Aspergillus ficuum in solid state fermentation.
    Bennett P; Yang ST
    Biotechnol Prog; 2012; 28(5):1263-70. PubMed ID: 22848026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of phytase production by solid substrate fermentation.
    Bogar B; Szakacs G; Linden JC; Pandey A; Tengerdy RP
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):183-9. PubMed ID: 12715256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications.
    Buddhiwant P; Bhavsar K; Kumar VR; Khire JM
    Prep Biochem Biotechnol; 2016 Aug; 46(6):531-8. PubMed ID: 26176365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of Aspergillus ficuum phytase: product characterization of the bioreactor.
    Ullah AH; Phillippy BQ
    Prep Biochem; 1988; 18(4):483-9. PubMed ID: 2852808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced submerged Aspergillus ficuum phytase production by implementation of fed-batch fermentation.
    Coban HB; Demirci A
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2579-86. PubMed ID: 24958522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology.
    Berikten D; Kivanc M
    Prep Biochem Biotechnol; 2014; 44(8):834-48. PubMed ID: 24279930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of colour LEDs on mycelia growth of Aspergillus ficuum and phytase production in photo-fermentations.
    Cheng CW; Chen CK; Chang CJ; Chen LY
    J Photochem Photobiol B; 2012 Jan; 106():81-6. PubMed ID: 22082775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation.
    Shivanna GB; Venkateswaran G
    ScientificWorldJournal; 2014; 2014():392615. PubMed ID: 24688383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of phytase producers and optimization of culture conditions for submerged fermentation.
    Coban HB; Demirci A
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):609-16. PubMed ID: 23943047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):1075-80. PubMed ID: 25555703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization.
    Ullah AH
    Prep Biochem; 1988; 18(4):459-71. PubMed ID: 2852807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves.
    Ullah AH; Sethumadhavan K; Mullaney EJ; Ziegelhoffer T; Austin-Phillips S
    Biochem Biophys Res Commun; 1999 Oct; 264(1):201-6. PubMed ID: 10527865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23.
    Zhang GQ; Dong XF; Wang ZH; Zhang Q; Wang HX; Tong JM
    Bioresour Technol; 2010 Jun; 101(11):4125-31. PubMed ID: 20144543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications.
    Singh B; Satyanarayana T
    Bioresour Technol; 2008 May; 99(8):2824-30. PubMed ID: 17681787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.