BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19748952)

  • 21. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.
    Navarro C; Díaz M; Villa-García MA
    Environ Sci Technol; 2010 Jul; 44(14):5383-8. PubMed ID: 20568743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hazardous ions uptake behavior of thermally activated steel-making slag.
    Jha VK; Kameshima Y; Nakajima A; Okada K
    J Hazard Mater; 2004 Oct; 114(1-3):139-44. PubMed ID: 15511584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of copper flotation waste using red mud and clinoptilolite.
    Coruh S
    Waste Manag Res; 2008 Oct; 26(5):409-18. PubMed ID: 18927060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.
    Maweja K; Mukongo T; Mutombo I
    J Hazard Mater; 2009 May; 164(2-3):856-62. PubMed ID: 18848396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.
    van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN
    Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal decomposition of pyrometallurgical copper slag by oxidation in synthetic air.
    Gyurov S; Kostova Y; Klitcheva G; Ilinkina A
    Waste Manag Res; 2011 Feb; 29(2):157-64. PubMed ID: 20705679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal.
    Sibanda V; Sipunga E; Danha G; Mamvura TA
    Heliyon; 2020 Jan; 6(1):e03135. PubMed ID: 31909286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential utilization of slag generated from iron- and steelmaking industries: a review.
    Zhang X; Chen J; Jiang J; Li J; Tyagi RD; Surampalli RY
    Environ Geochem Health; 2020 May; 42(5):1321-1334. PubMed ID: 31664635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization study of heavy metal-bearing phases in MSW slag.
    Saffarzadeh A; Shimaoka T; Motomura Y; Watanabe K
    J Hazard Mater; 2009 May; 164(2-3):829-34. PubMed ID: 18926624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag.
    Oh C; Rhee S; Oh M; Park J
    J Hazard Mater; 2012 Apr; 213-214():147-55. PubMed ID: 22349716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.
    Li B; Wang X; Wang H; Wei Y; Hu J
    Sci Rep; 2017 May; 7(1):2406. PubMed ID: 28546556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the life cycle management of industrial solid waste in the case of copper slag.
    Song X; Yang J; Lu B; Li B
    Waste Manag Res; 2013 Jun; 31(6):625-33. PubMed ID: 23512953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.
    Huang R; Huang KL; Lin ZY; Wang JW; Lin C; Kuo YM
    J Environ Manage; 2013 Nov; 129():586-92. PubMed ID: 24036091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An effective utilization of the slag from acid leaching of coal-waste: preparation of water glass with a low-temperature co-melting reaction.
    Fang L; Duan X; Chen R; Cheng F
    J Air Waste Manag Assoc; 2014 Aug; 64(8):887-93. PubMed ID: 25185391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of copper slag for beneficiation of iron and copper.
    Gabasiane TS; Danha G; Mamvura TA; Mashifana T; Dzinomwa G
    Heliyon; 2021 Apr; 7(4):e06757. PubMed ID: 33912720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molybdate adsorption from steel slag eluates by subsoils.
    Matern K; Rennert T; Mansfeldt T
    Chemosphere; 2013 Nov; 93(9):2108-15. PubMed ID: 23973286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the economic feasibility of a processing plant for steelmaking slag.
    Gonçalves DR; Fontes WC; Mendes JC; Silva GJ; Peixoto RA
    Waste Manag Res; 2016 Feb; 34(2):107-12. PubMed ID: 26634879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A discussion on improving hydration activity of steel slag by altering its mineral compositions.
    Wang Q; Yan P; Feng J
    J Hazard Mater; 2011 Feb; 186(2-3):1070-5. PubMed ID: 21168967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water.
    Mercado-Borrayo BM; Schouwenaars R; González-Chávez JL; Ramírez-Zamora RM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):887-95. PubMed ID: 23485238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics and chemical speciation of waste copper slag.
    Li Z; Ma G; Zhang X; Li J
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20012-20022. PubMed ID: 33410052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.