BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 19749108)

  • 1. Wetting properties on nanostructured surfaces of cicada wings.
    Sun M; Watson GS; Zheng Y; Watson JA; Liang A
    J Exp Biol; 2009 Oct; 212(19):3148-55. PubMed ID: 19749108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes.
    Sun M; Liang A; Zheng Y; Watson GS; Watson JA
    Bioinspir Biomim; 2011 Jun; 6(2):026003. PubMed ID: 21464519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting.
    Hong SH; Hwang J; Lee H
    Nanotechnology; 2009 Sep; 20(38):385303. PubMed ID: 19713589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Role of Habitat on the Wettability of Cicada Wings.
    Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings.
    Sun M; Liang A; Watson GS; Watson JA; Zheng Y; Ju J; Jiang L
    PLoS One; 2012; 7(4):e35056. PubMed ID: 22536351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cicada wings: a stamp from nature for nanoimprint lithography.
    Zhang G; Zhang J; Xie G; Liu Z; Shao H
    Small; 2006 Dec; 2(12):1440-3. PubMed ID: 17193002
    [No Abstract]   [Full Text] [Related]  

  • 7. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing.
    Watson GS; Cribb BW; Watson JA
    ACS Nano; 2010 Jan; 4(1):129-36. PubMed ID: 20099910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars.
    Shahali H; Hasan J; Mathews A; Wang H; Yan C; Tesfamichael T; Yarlagadda PKDV
    J Mater Chem B; 2019 Feb; 7(8):1300-1310. PubMed ID: 32255169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.
    Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP
    Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fouling of nanostructured insect cuticle: adhesion of natural and artificial contaminants.
    Hu HM; Watson JA; Cribb BW; Watson GS
    Biofouling; 2011; 27(10):1125-37. PubMed ID: 22081886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface composition and contact angle relationships for differently prepared solid dispersions.
    Dahlberg C; Millqvist-Fureby A; Schuleit M
    Eur J Pharm Biopharm; 2008 Oct; 70(2):478-85. PubMed ID: 18577450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings.
    Ivanova EP; Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Baulin VA; Pogodin S; Wang JY; Tobin MJ; Löbbe C; Crawford RJ
    Small; 2012 Aug; 8(16):2489-94. PubMed ID: 22674670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of plasma processed surfaces with tuned wettability.
    Ruiz A; Valsesia A; Ceccone G; Gilliland D; Colpo P; Rossi F
    Langmuir; 2007 Dec; 23(26):12984-9. PubMed ID: 18020471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-temperature wetting transition on micro- and nanostructured surfaces.
    Zhang T; Wang J; Chen L; Zhai J; Song Y; Jiang L
    Angew Chem Int Ed Engl; 2011 May; 50(23):5311-4. PubMed ID: 21604336
    [No Abstract]   [Full Text] [Related]  

  • 18. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider.
    Watson GS; Cribb BW; Watson JA
    Acta Biomater; 2010 Oct; 6(10):4060-4. PubMed ID: 20417737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.
    Kelleher SM; Habimana O; Lawler J; O' Reilly B; Daniels S; Casey E; Cowley A
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):14966-74. PubMed ID: 26551558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing.
    Watson GS; Cribb BW; Watson JA
    J Struct Biol; 2010 Jul; 171(1):44-51. PubMed ID: 20347993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.